-
In recent years, dual repetition-rate mode-locked lasers with slightly different pulse repetition rates, as newly developed ultrafast lasers, have attracted great interest and shown their applications in ultrafast dual-comb spectroscopy, asynchronous optical sampling without mechanical movement, etc. The traditional dual-comb system composed of a pair of independent optical frequency combs with slightly detuned comb spacing is still considered expensive, complex and fragile. It is imperative to develop practical and compact dual-comb devices. Dual repetition-rate ultrafast lasers generating asynchronous ultrafast pulses directly from a single cavity can be a promising alternative to the current dual-laser-based comb source. A dual-comb setup based on single laser has the advantages of compact structure, low cost and intrinsic mutual coherence. This technique paves the way for developing the compact, robust and environmental-immune dual-comb systems. In this paper we develop an alternative dual repetition-rate mode-locked Yb:YAG ceramic laser that emits a pair of pulses with spatially separated beams from a single cavity by using a semiconductor saturable absorber mirror and a dual-path pump configuration. In our experiment, a high quality transparent Yb:YAG ceramic prepared by non-aqueous taper-casting method is selected as the gain medium, which is pumped by a 940 nm laser diode. A dual-path pump configuration consisting of a pair of polarization beam splitters and a pair of half-wave plates is designed, in which total pump power from a laser diode is divided equally for pumping the two separate laser beams. When the total absorbed pump power is 5.6 W, dual repetition-rate continuous mode-locked laser operation is achieved under the gain-loss balanced cavity condition. The pulse repetition rates of Pulse1 and Pulse2 are 448.918 MHz and 448.923 MHz, respectively. The difference between repetition rates is 5 kHz mainly caused by the different optical path lengths in the cavity. Under an absorbed pump power of 7 W, the maximum total output power extracted from this laser reaches 170 mW, i.e., 89 mW for Pulse1 and 81 mW for Pulse2. The two mode-locked pulses have nearly identical spectral shapes centered at 1029.6 nm and 1029.8 nm, respectively. The spectral bandwidths for Pulse1 and Pulse2 are 1 nm and 1.16 nm, respectively. The corresponding pulse durations are 2.8 ps and 2.6 ps for the Pulse1 and Pulse2 respectively. Our scheme integrates the advantages of self-starting operation, high repetition-rate, suppression of gain competition. These results indicate that dual-path pump configuration is feasible for dual-repetition-rate mode-locked lasers. These co-generated, dual repetition-rate pulses from one laser cavity possess similar laser characteristics and can be operated independently by dual-path pump configuration. This laser has potential advantages of compact, cost-effective and high-stability for single-cavity-based dual-comb applications in dual-comb spectroscopy, distance ranging, etc.
[1] Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542
[2] Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029
[3] Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902
[4] Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55
[5] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[6] Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597
[7] Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107
[8] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[9] Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521
[10] Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833
[11] Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104
[12] Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748
[13] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164
[14] Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937
[15] Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20
[16] Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3
[17] Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5
[18] Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111
[19] Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330
[20] Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433
[21] Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289
[22] Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3
[23] Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351
[24] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884
-
[1] Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542
[2] Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029
[3] Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902
[4] Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55
[5] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351
[6] Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597
[7] Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107
[8] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
[9] Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521
[10] Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833
[11] Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104
[12] Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748
[13] Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164
[14] Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937
[15] Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20
[16] Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3
[17] Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5
[18] Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111
[19] Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330
[20] Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433
[21] Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289
[22] Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3
[23] Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351
[24] Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884
Catalog
Metrics
- Abstract views: 7148
- PDF Downloads: 240
- Cited By: 0