Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual repetition-rate mode-locked Yb: YAG ceramic laser

Yang Chao Gu Cheng-Lin Liu Yang Wang Chao Li Jiang Li Wen-Xue

Citation:

Dual repetition-rate mode-locked Yb: YAG ceramic laser

Yang Chao, Gu Cheng-Lin, Liu Yang, Wang Chao, Li Jiang, Li Wen-Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, dual repetition-rate mode-locked lasers with slightly different pulse repetition rates, as newly developed ultrafast lasers, have attracted great interest and shown their applications in ultrafast dual-comb spectroscopy, asynchronous optical sampling without mechanical movement, etc. The traditional dual-comb system composed of a pair of independent optical frequency combs with slightly detuned comb spacing is still considered expensive, complex and fragile. It is imperative to develop practical and compact dual-comb devices. Dual repetition-rate ultrafast lasers generating asynchronous ultrafast pulses directly from a single cavity can be a promising alternative to the current dual-laser-based comb source. A dual-comb setup based on single laser has the advantages of compact structure, low cost and intrinsic mutual coherence. This technique paves the way for developing the compact, robust and environmental-immune dual-comb systems. In this paper we develop an alternative dual repetition-rate mode-locked Yb:YAG ceramic laser that emits a pair of pulses with spatially separated beams from a single cavity by using a semiconductor saturable absorber mirror and a dual-path pump configuration. In our experiment, a high quality transparent Yb:YAG ceramic prepared by non-aqueous taper-casting method is selected as the gain medium, which is pumped by a 940 nm laser diode. A dual-path pump configuration consisting of a pair of polarization beam splitters and a pair of half-wave plates is designed, in which total pump power from a laser diode is divided equally for pumping the two separate laser beams. When the total absorbed pump power is 5.6 W, dual repetition-rate continuous mode-locked laser operation is achieved under the gain-loss balanced cavity condition. The pulse repetition rates of Pulse1 and Pulse2 are 448.918 MHz and 448.923 MHz, respectively. The difference between repetition rates is 5 kHz mainly caused by the different optical path lengths in the cavity. Under an absorbed pump power of 7 W, the maximum total output power extracted from this laser reaches 170 mW, i.e., 89 mW for Pulse1 and 81 mW for Pulse2. The two mode-locked pulses have nearly identical spectral shapes centered at 1029.6 nm and 1029.8 nm, respectively. The spectral bandwidths for Pulse1 and Pulse2 are 1 nm and 1.16 nm, respectively. The corresponding pulse durations are 2.8 ps and 2.6 ps for the Pulse1 and Pulse2 respectively. Our scheme integrates the advantages of self-starting operation, high repetition-rate, suppression of gain competition. These results indicate that dual-path pump configuration is feasible for dual-repetition-rate mode-locked lasers. These co-generated, dual repetition-rate pulses from one laser cavity possess similar laser characteristics and can be operated independently by dual-path pump configuration. This laser has potential advantages of compact, cost-effective and high-stability for single-cavity-based dual-comb applications in dual-comb spectroscopy, distance ranging, etc.
      Corresponding author: Li Wen-Xue, wxli@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422434, 11621404, 61575212), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ150092), the Dawn Program of Shanghai Education Commission, China (Grant No. 16SG22), and the Shanghai Pujiang Talent Program, China (Grant No. 17PJ1402300).
    [1]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [2]

    Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029

    [3]

    Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902

    [4]

    Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [6]

    Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597

    [7]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107

    [8]

    Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647

    [9]

    Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521

    [10]

    Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833

    [11]

    Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104

    [12]

    Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748

    [13]

    Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164

    [14]

    Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937

    [15]

    Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20

    [16]

    Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3

    [17]

    Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5

    [18]

    Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111

    [19]

    Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330

    [20]

    Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433

    [21]

    Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289

    [22]

    Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3

    [23]

    Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351

    [24]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884

  • [1]

    Keilmann F, Gohle C, Holzwarth R 2004 Opt. Lett. 29 1542

    [2]

    Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029

    [3]

    Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902

    [4]

    Bernhardt B, Ozawa A, Jaquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Piqu N 2010 Nat. Photon. 4 55

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [6]

    Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597

    [7]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107

    [8]

    Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647

    [9]

    Link S M, Klenner A, Mangold M, Zaugg C A, Golling M, Tilma B W, Keller U 2015 Opt. Express 23 5521

    [10]

    Zhao X, Hu G Q, Zhao B F, Li C, Pan Y L, Liu Y, Yasui T, Zheng Z 2016 Opt. Express 24 21833

    [11]

    Mehravar S, Norwood R A, Peyghambarian N, Kieu K 2016 Appl. Phys. Lett. 108 231104

    [12]

    Ideguchi T, Nakamura T, Kobayashi Y, Goda K 2016 Optica 3 748

    [13]

    Link S M, Maas D J H C, Waldburger D, Keller U 2017 Science 356 1164

    [14]

    Zeng C, Liu X M, Yun L 2013 Opt. Express 21 18937

    [15]

    Gong Z, Zhao X, Hu G, Liu J, Zheng Z 2014 Conference on Lasers and Electro-Optics San Jose, USA, June 8-13, 2014 pJTh2A.20

    [16]

    Kolano M, Grf B, Molter D, Ellrich F, von Freymann G 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, 2010 pAM2J.3

    [17]

    Liao R Y, Song Y J, Chai L, Hu M L 2017 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, USA, May 14-19, 2017 pSM4L.5

    [18]

    Chang M T, Liang H C, Su K W, Chen Y F 2015 Opt. Express 23 10111

    [19]

    Bai D B, Li W X, Yang X H, Ba X W, Li J, Pan Y B, Zeng H P 2015 Opt. Mater. Express 5 330

    [20]

    Wang C, Li W X, Bai D B, Zhao J, Li J, Ba X W, Ge L, Pan Y B, Zeng H P 2016 IEEE Photon. Technol. Lett. 28 433

    [21]

    Wang C, Li W X, Yang C, Bai D B, Li J, Ge L, Pan Y B, Zeng H P 2016 Sci. Rep. 6 31289

    [22]

    Bai D B, Li W X, Wang C, Liu Y, Li J, Ge L, Pan Y B, Zeng H P 2016 Conference on Lasers and Electro-Optics San Jose, USA, June 5-10, pSF2I.3

    [23]

    Klenner A, Golling M, .Keller U 2013 Opt. Express 21 10351

    [24]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884

  • [1] He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Low repetition rate passive mode-locked semiconductor disk laser. Acta Physica Sinica, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [3] Zheng Li, Tian Wen-Long, Ma Jun-Yi, Yu Yang, Xu Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi, Zhu Jiang-Feng. Sub-100 fs Kerr-lens mode-locked femtosecond Yb:CaYAlO4 laser with GHz repetition rate. Acta Physica Sinica, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [4] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [5] Wang Yang, Liu Yu, Wu Cheng-Yin. Generation, manipulation, and application of high-order harmonics in solids. Acta Physica Sinica, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [6] Li Wei, Wang Xiao, Hong Yi-Lin, Zeng Xiao-Ming, Mu Jie, Hu Bi-Long, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Single-frame measurement of complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral interferometry. Acta Physica Sinica, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [7] Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao. Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser. Acta Physica Sinica, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [8] Single-frame measurement of the complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral Interferometry. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211665
    [9] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] Niu Lu, Wang Lu-Xia. Effect of external field on the I-V characteristics through the molecular nano-junction. Acta Physica Sinica, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [11] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, 2017, 66(1): 014203. doi: 10.7498/aps.66.014203
    [12] Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming. Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling. Acta Physica Sinica, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [13] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [14] Zhang Bo, Zhang Chun-Feng, Li Xi-You, Wang Rui, Xiao Min. Ultrafast spectroscopic study for singlet fission. Acta Physica Sinica, 2015, 64(9): 094210. doi: 10.7498/aps.64.094210
    [15] Wang Yan-Zhi, Shao Jian-Da, Yi Kui, Qi Hong-Ji, Wang Ding, Leng Yu-Xin. Design and fabrication of broadband chirped mirror pair. Acta Physica Sinica, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [16] Xu Yue, Jin Zuan-Ming, Li Gao-Fang, Zhang Zheng-Bing, Lin Xian, Ma Guo-Hong, Cheng Zhen-Xiang. Ultrafast spectroscopy of the Mn3+ dd transition in YMnO3 film. Acta Physica Sinica, 2012, 61(17): 177802. doi: 10.7498/aps.61.177802
    [17] Niu Hai-Liang, Zhang Yue-Guang, Shen Wei-Dong, Yu Peng, Li Yang-Hui, Liu Xu. Design of ultrabroadband double-chirped mirror pairs for ultrafast lasers. Acta Physica Sinica, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [18] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [19] Deng Yu-Qiang, Sun Qing, Yu Jing. Direct measurement of group delay of optical elements. Acta Physica Sinica, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [20] MA HONG-LIANG, TANG JIA-YONG. MEASUREMENT OF ISOTOPE SHIFTS AMONG 142—146,148,150Nd+ BY USING COLLINEAR FAST-ION-BEAM LASER SPECTROSCOPY. Acta Physica Sinica, 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
Metrics
  • Abstract views:  7320
  • PDF Downloads:  241
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2017
  • Accepted Date:  20 December 2017
  • Published Online:  05 May 2018

/

返回文章
返回