Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Higgs physics in superconductors

Hao Chu Haotian Zhang Zhili Zhang

Citation:

Higgs physics in superconductors

Hao Chu, Haotian Zhang, Zhili Zhang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As pointed out by Nambu-Goldstone theorem, continuous symmetry breaking gives rise to massless or gapless bosonic excitations. In superconductors, continuous local U(1) gauge symmetry is broken. The gapless excitation thus created is the collective phase mode of the superconducting order parameter. In 1962, Philip Anderson pointed out that the Coulomb interaction between Cooper pairs lifts this gapless mode to the superconducting plasma frequency. Therefore, in a superconducting fluid there are no bosonic excitations below the binding energy of the Cooper pairs (2Δ). Anderson’s mechanism also implies that the massless photon which mediates electromagnetic interaction becomes massive in a superconductor. This mechanism provides a microscopic theory for the dissipationless charge transport (in conjunction with Landau’s criterion for superfluidity) as well as the Meissner effect inside a superconductor. Jumping into particle physics, in 1964 in order to explain why the gauge bosons for electroweak interaction, namely the W±, Z bosons, are massive, Peter Higgs, François Englert, Tom Kibble and colleagues proposed the existence of a field (presently referred to as the Higgs field) in nature. This matter field couples to the massless W±, Z bosons and generates mass via the Higgs mechanism. Due to their conceptual similarities, these two mechanisms are collectively referred to as the Anderson-Higgs mechanism nowadays. In 2013, the detection of the scalar excitation of the Higgs field, namely the Higgs boson, at the Large Hadron Collider provided the final proof for the Higgs hypothesis almost 50 years after its conception. The amplitude mode of the superconducting order parameter, which corresponds to the Higgs boson through the above analogy, is referred to as the Higgs mode of a superconductor. Its spectroscopic detection has also remained elusive for nearly half a century. In recent years, the development of ultrafast and nonlinear spectroscopic techniques enabled an effective approach for investigating the Higgs mode of superconductors. This article will introduce the historical background of the Higgs mode and review the recent developments in its spectroscopy investigation. We will also discuss the novel perspectives and insights that may be learnt from these studies for future high-temperature superconductivity research.
  • [1]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 106 162

    [2]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [3]

    McMillan W L 1968 Phys. Rev. 167 331

    [4]

    Landau L 1941 Phys. Rev. 60 356

    [5]

    Yarnell J L, Arnold G P, Bendt P J, Kerr E C 1958 Phys. Rev. Lett. 1 9

    [6]

    Shimano R, Tsuji N 2020 Annu. Rev. Condens. Matter Phys. 11 103

    [7]

    Anderson P W 1963 Phys. Rev. 130 439

    [8]

    Basov D N, Woods S I, Katz A S, Singley E J, Dynes R C, Xu M, Hinks D G, Homes C C, Strongin M 1999 Science 283 49

    [9]

    Higgs P W 1964 Phys. Rev. Lett. 13 508

    [10]

    Englert F, Brout R 1964 Phys. Rev. Lett. 13 321

    [11]

    Guralnik G S, Hagen C R, Kibble T W B 1964 Phys. Rev. Lett. 13 585

    [12]

    Volkov A F, Kogan S M 1973 J. Exp. Theor. Phys. 65 2038

    [13]

    Peronaci F, Schiró M, Capone M 2015 Phys. Rev. Lett. 115 257001

    [14]

    Pekker D, Varma C M 2015 Annu. Rev. Condens. Matter Phys. 6 269

    [15]

    Podolsky D, Auerbach A, Arovas D P 2011 Phys. Rev. B 84 174522

    [16]

    Cea T, Castellani C, Seibold G, Benfatto L 2015 Phys. Rev. Lett. 115 157002

    [17]

    Sooryakumar R, Klein M V 1980 Phys. Rev. Lett. 45 660

    [18]

    Sooryakumar R, Klein M V 1981 Phys. Rev. B 23 3213

    [19]

    Littlewood P B, Varma C M 1981 Phys. Rev. Lett. 47 811

    [20]

    Littlewood P B, Varma C M 1982 Phys. Rev. B 26 4883

    [21]

    Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z, Shimano R 2013 Phys. Rev. Lett. 111 057002

    [22]

    Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H, Shimano R 2014 Science 345 1145

    [23]

    Anderson P W 1958 Phys. Rev. 112 1900

    [24]

    Tsuji N, Aoki H 2015 Phys. Rev. B 92 064508

    [25]

    Mansart B, Lorenzana J, Mann A, Odeh A, Scarongella M, Chergui M, Carbone F 2013 Proc. Natl. Acad. Sci. U.S.A. 110 4539

    [26]

    Devereaux T P, Hackl R 2007 Rev. Mod. Phys. 79 175

    [27]

    Katsumi K, Tsuji N, Hamada Y I, Matsunaga R, Schneeloch J, Zhong R D, Gu G D, Aoki H, Gallais Y, Shimano R 2018 Phys. Rev. Lett. 120 117001

    [28]

    Chu H, Kovalev S, Wang Z X, Schwarz L, Dong T, Feng L, Haenel R, Kim M-J, Shabestari P, Hoang L P, Honasoge K, Dawson R D, Putzky D, Kim G, Puviani M, Chen M, Awari N, Ponomaryov A N, Ilyakov I, Bluschke M, Boschini F, Zonno M, Zhdanovich S, Na M, Christiani G, Logvenov G, Jones D J, Damascelli A, Minola M, Keimer B, Manske D, Wang N, Deinert J-C, Kaiser S 2023 Nat. Commun. 14 1343

    [29]

    Cea T, Castellani C, Benfatto L 2016 Phys. Rev. B 93 180507

    [30]

    Matsunaga R, Tsuji N, Makise K, Terai H, Aoki H, Shimano R 2017 Phys. Rev. B 96 020505

    [31]

    Tsuji N, Murakami Y, Aoki H 2016 Phys. Rev. B 94 224519

    [32]

    Cea T, Barone P, Castellani C, Benfatto L 2018 Phys. Rev. B 97 094516

    [33]

    Seibold G, Udina M, Castellani C, Benfatto L 2021 Phys. Rev. B 103 014512

    [34]

    Tsuji N, Nomura Y 2020 Phys. Rev. Res. 2 043029

    [35]

    Gabriele F, Udina M, Benfatto L 2021 Nat. Commun. 12 752

    [36]

    Lorenzana J, Seibold G 2024 Phys. Rev. Lett. 132 026501

    [37]

    Kemper A F, Sentef M A, Moritz B, Freericks J K, Devereaux T P 2015 Phys. Rev. B 92 224517

    [38]

    Krull H, Bittner N, Uhrig G S, Manske D, Schnyder A P 2016 Nat. Commun. 7 11921

    [39]

    Moor A, Volkov A F, Efetov K B 2017 Phys. Rev. Lett. 118 047001

    [40]

    Nakamura S, Iida Y, Murotani Y, Matsunaga R, Terai H, Shimano R 2019 Phys. Rev. Lett. 122 257001

    [41]

    Barlas Y, Varma C M 2013 Phys. Rev. B 87 054503

    [42]

    Schwarz L, Fauseweh B, Tsuji N, Cheng N, Bittner N, Krull H, Berciu M, Uhrig G S, Schnyder A P, Kaiser S, Manske D 2020 Nat. Commun. 11 287

    [43]

    Yang F, Wu M W 2018 Phys. Rev. B 98 094507

    [44]

    Yang F, Wu M W 2019 Phys. Rev. B 100 104513

    [45]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 93 094509

    [46]

    Murakami Y, Werner P, Tsuji N, Aoki H 2016 Phys. Rev. B 94 115126

    [47]

    Sherman D, Pracht U S, Gorshunov B, Poran S, Jesudasan J, Chand M, Raychaudhuri P, Swanson M, Trivedi N, Auerbach A, Scheffler M, Frydman A, Dressel M 2015 Nat. Phys. 11 188

    [48]

    Kovalev S, Dong T, Shi L-Y, Reinhoffer C, Xu T-Q, Wang H-Z, Wang Y, Gan Z-Z, Germanskiy S, Deinert J-C, Ilyakov I, van Loosdrecht P H M, Wu D, Wang N-L, Demsar J, Wang Z 2021 Phys. Rev. B 104 L140505

    [49]

    Wang Z-X, Xue J-R, Shi H-K, Jia X-Q, Lin T, Shi L-Y, Dong T, Wang F, Wang N-L 2022 Phys. Rev. B 105 L100508

    [50]

    Chu H, Kim M-J, Katsumi K, Kovalev S, Dawson R D, Schwarz L, Yoshikawa N, Kim G, Putzky D, Li Z Z, Raffy H, Germanskiy S, Deinert J-C, Awari N, Ilyakov I, Green B, Chen M, Bawatna M, Cristiani G, Logvenov G, Gallais Y, Boris A V, Keimer B, Schnyder A P, Manske D, Gensch M, Wang Z, Shimano R, Kaiser S 2020 Nat. Commun. 11 1793

    [51]

    Cea T, Benfatto L 2014 Phys. Rev. B 90 224515

    [52]

    Schwarz L, Haenel R, Manske D 2021 Phys. Rev. B 104 174508

    [53]

    Feng L, Cao J, Priessnitz T, Dai Y, de Oliveira T, Yuan J, Oka R, Kim M-J, Chen M, Ponomaryov A N, Ilyakov I, Zhang H, Lv Y, Mazzotti V, Kim G, Christiani G, Logvenov G, Wu D, Huang Y, Deinert J-C, Kovalev S, Kaiser S, Dong T, Wang N, Chu H 2023 Phys. Rev. B 108 L100504

    [54]

    Yuan J, Shi L, Yue L, Li B, Wang Z, Xu S, Xu T, Wang Y, Gan Z, Chen F, Lin Z, Wang X, Jin K, Wang X, Luo J, Zhang S, Wu Q, Liu Q, Hu T, Li R, Zhou X, Wu D, Dong T, Wang N 2024 Sci. Adv. 10 eadg9211

    [55]

    Méasson M-A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, Sacuto A 2014 Phys. Rev. B 89 060503

    [56]

    Grasset R, Cea T, Gallais Y, Cazayous M, Sacuto A, Cario L, Benfatto L, Méasson M-A 2018 Phys. Rev. B 97 094502

    [57]

    Grasset R, Gallais Y, Sacuto A, Cazayous M, Mañas-Valero S, Coronado E, Méasson M-A 2019 Phys. Rev. Lett. 122 127001

    [58]

    Glier T E, Tian S, Rerrer M, Westphal L, Lüllau G, Feng L, Dolgner J, Haenel R, Zonno M, Eisaki H, Greven M, Damascelli A, Kaiser S, Manske D, Rübhausen M 2024 arXiv:2310.08162

    [59]

    Puviani M, Baum A, Ono S, Ando Y, Hackl R, Manske D 2021 Phys. Rev. Lett. 127 197001

    [60]

    Mineev V P, Zhitomirsky M E 2005 Phys. Rev. B 72 014432

    [61]

    Harter J W, Zhao Z-Y, Yan J Q, Mandrus D G, Hsieh D 2017 Science 356 295

    [62]

    Chu J-H, Kuo H-H, Analytis J G, Fisher I R 2012 Science 337 710

    [63]

    Vaswani C, Kang J H, Mootz M, Luo L, Yang X, Sundahl C, Cheng D, Huang C, Kim R H J, Liu Z, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2021 Nat. Commun. 12 258

    [64]

    Luo L, Mootz M, Kang J H, Huang C, Eom K, Lee J W, Vaswani C, Collantes Y G, Hellstrom E E, Perakis I E, Eom C B, Wang J 2023 Nat. Phys. 19 201

    [65]

    Katsumi K, Fiore J, Udina M, Romero R, Barbalas D, Jesudasan J, Raychaudhuri P, Seibold G, Benfatto L, Armitage N P 2024 Phys. Rev. Lett. 132 256903

    [66]

    Kim M-J, Kovalev S, Udina M, Haenel R, Kim G, Puviani M, Cristiani G, Ilyakov I, de Oliveira T V A G, Ponomaryov A, Deinert J-C, Logvenov G, Keimer B, Manske D, Benfatto L, Kaiser S 2024 Sci. Adv. 10 eadi7598

    [67]

    Du Y, Liu G, Ruan W, Fang Z, Watanabe K, Taniguchi T, Liu R, Li J-X, Xi X 2025 Phys. Rev. Lett. 134 066002

    [68]

    Isoyama K, Yoshikawa N, Katsumi K, Wong J, Shikama N, Sakishita Y, Nabeshima F, Maeda A, Shimano R 2021 Commun. Phys. 4 1

    [69]

    Katsumi K, Nishida M, Kaiser S, Miyasaka S, Tajima S, Shimano R 2023 Phys. Rev. B 107 214506

    [70]

    Collado H P O, Lorenzana J, Usaj G, Balseiro C A 2018 Phys. Rev. B 98 214519

    [71]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2021 Phys. Rev. Res. 3 L042023

    [72]

    Collado H P O, Usaj G, Balseiro C A, Zanette D H, Lorenzana J 2023 Phys. Rev. Res. 5 023014

    [73]

    Fan B, Cai Z, García-García A M 2024 Phys. Rev. B 110 134307

  • [1] Liu Quan-Cheng, Yang Fu, Zhang Qi, Duan Yong-Wei, Deng Hu, Shang Li-Ping. Research on vibrational features of CL-20/MTNP cocrystal by terahertz spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240944
    [2] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, doi: 10.7498/aps.71.20220011
    [3] Li Chun-Guang, Wang Jia, Wu Yun, Wang Xu, Sun Liang, Dong Hui, Gao Bo, Li Hao, You Li-Xing, Lin Zhi-Rong, Ren Jie, Li Jing, Zhang Wen, He Qing, Wang Yi-Wen, Wei Lian-Fu, Sun Han-Cong, Wang Hua-Bing, Li Jin-Jin, Qu Ji-Feng. Recent progress of superconducting electronics in China. Acta Physica Sinica, doi: 10.7498/aps.70.20202121
    [4] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, doi: 10.7498/aps.70.20202180
    [5] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, doi: 10.7498/aps.68.20190305
    [6] Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong. Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure. Acta Physica Sinica, doi: 10.7498/aps.67.20180627
    [7] Zhang Xiang-Yu, Ma Ying-Xiang, Xu Chun-Long, Ding Jian, Quan Hong-Juan, Hou Zhao-Yang, Shi Gang, Qin Ning, Gao Dang-Li. Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals. Acta Physica Sinica, doi: 10.7498/aps.67.20172191
    [8] Yang Chao, Gu Cheng-Lin, Liu Yang, Wang Chao, Li Jiang, Li Wen-Xue. Dual repetition-rate mode-locked Yb: YAG ceramic laser. Acta Physica Sinica, doi: 10.7498/aps.67.20172345
    [9] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.66.014203
    [10] Fan Zheng-Fu, Tan Zhi-Yong, Wan Wen-Jian, Xing Xiao, Lin Xian, Jin Zuan-Ming, Cao Jun-Cheng, Ma Guo-Hong. Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.66.087801
    [11] Zhang Bo, Zhang Chun-Feng, Li Xi-You, Wang Rui, Xiao Min. Ultrafast spectroscopic study for singlet fission. Acta Physica Sinica, doi: 10.7498/aps.64.094210
    [12] Liu Ning, Zhang Xin-Ping, Dou Fei. Heterojunction structure forming in the polymer film doped with small-molecule organic semiconductors. Acta Physica Sinica, doi: 10.7498/aps.61.027201
    [13] Xu Yue, Jin Zuan-Ming, Li Gao-Fang, Zhang Zheng-Bing, Lin Xian, Ma Guo-Hong, Cheng Zhen-Xiang. Ultrafast spectroscopy of the Mn3+ dd transition in YMnO3 film. Acta Physica Sinica, doi: 10.7498/aps.61.177802
    [14] Wu Xue-Wei, Liu Xiao-Jun. Grain-boundary effects on optical properties in SrTiO3 nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.57.5500
    [15] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, doi: 10.7498/aps.55.3760
    [16] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, doi: 10.7498/aps.50.1956
    [17] MA HONG-LIANG, TANG JIA-YONG. MEASUREMENT OF ISOTOPE SHIFTS AMONG 142—146,148,150Nd+ BY USING COLLINEAR FAST-ION-BEAM LASER SPECTROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.50.453
    [18] WEN HAI-HU, LI HONG-CHENG, QI ZHEN-ZHONG, CAO XIAO-WEN. FLUCTUATION AND DIMENSIONALITY OF SUPERCONDUCTIVITY IN HIGH Tc THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.39.1811
    [19] LI YAN-FEI. SUPERCONDUCTING FLUCTUATION AND PARACONDUCTIV-ITY IN AMORPHOUS ZrCo ALLOYS. Acta Physica Sinica, doi: 10.7498/aps.39.151
    [20] LI YIN-YUAN. ON THE RAMAN EFFECT OF MULTIPLE RADIATION PROCESS AND ITS APPLICATIONS IN SPECTROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.20.164
Metrics
  • Abstract views:  60
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  19 April 2025

/

返回文章
返回