Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic resonance and quantum sensing with color centers under high pressures

Liu Gang-Qin

Citation:

Magnetic resonance and quantum sensing with color centers under high pressures

Liu Gang-Qin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • High pressure conditions are a crucial way to realize novel states and regulate material properties, while magnetic resonance technology is a widely used method to characterize microscopic magnetic structures and magnetic properties. The integration of these two fields offers new opportunities for cutting-edge research in condensed matter physics and materials science. However, it is challenging for conventional magnetic resonance to measure micrometer-sized samples under ultra-high pressure, as it is limited by low spin polarization and low signal detection efficiency. Recent advances in the field of quantum sensing in solids, in particular the development of quantum sensors based on diamond nitrogen vacancy (NV) centers, offer an innovative solution for magnetic resonance and in-situ quantum sensing under high-pressure conditions. This article summarizes the effects of high-pressure environments on the spin and optical properties of NV centers, with the aim of exploring the magnetic resonance of color centers under high pressure. In addition, with applications such as magnetic imaging, pressure detection, and characterization of the superconducting Meissner effect under high pressures, this article reviews recent advances in diamondbased quantum sensing under high-pressure conditions.
  • [1]

    . Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. PNAS 109, 6463 (2012).

    [2]

    . Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73 (2015).

    [3]

    . Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    [4]

    . Somayazulu, M. et al. Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. Phys. Rev. Lett. 122, 027001 (2019).

    [5]

    . Zhang, L., Wang, Y., Lv, J. & Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2, 17005 (2017).

    [6]

    . Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542 (2004).

    [7]

    . Hirose, K., Fei, Y., Ma, Y. & Mao, H. K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53 (1999).

    [8]

    . Hu, Q. et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241 (2016).

    [9]

    . Meier, T. At Its Extremes: NMR at Giga-Pascal Pressures. Annu Rep NMR Spectrosc 93, 1–74 (2018).

    [10]

    . Meier, T. et al. Pressure-Induced Hydrogen-Hydrogen Interaction in Metallic FeH Revealed by NMR. Phys. Rev. X 9, 031008 (2019).

    [11]

    . Dai, J.-H. et al. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures. Chin. Phys. Lett. 39, 117601 (2022).

    [12]

    . Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phy.s Rev. B 107, L220102 (2023).

    [13]

    . Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73 (2024).

    [14]

    . Wang, M. et al. Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell. Nat. Commun. 15, 8843 (2024).

    [15]

    . Liu, G.-Q., Feng, X., Wang, N., Li, Q. & Liu, R.-B. Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin. Nat. Commun. 10, 1344 (2019).

    [16]

    . Fan, J. W. et al. Quantum Coherence Control at Temperatures up to 1400 K. Nano Lett. 24, 14806 (2024)

    [17]

    . Fortman, B. et al. Electron-electron double resonance detected NMR spectroscopy using ensemble NV centers at 230 GHz and 8.3 T. J Appl. Phys. 130, 083901 (2021).

    [18]

    . Liu, G. Q. 极端条件下的金刚石自旋量子传感. 物理学报, 71, 066101 (2022).

    [19]

    . Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    [20]

    . Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 65, 83 (2014).

    [21]

    . Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    [22]

    . Casola, F., Van Der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088.

    [23]

    . Liu, G. Q., Liu, R. B. & Li, Q. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Acc. Chem. Res. 56, 95 (2022)

    [24]

    . Liu, G. Q., Xing, J. & Pan, X. Y. 金刚石氮空位中心自旋量子调控. 物理学报, 67, 120302 (2019).

    [25]

    . Dong, Y., Du, B., Zhang, S. C., Chen, X. D. & Sun, F. W. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 67, 160301 (2019).

    [26]

    . Peng, S., Liu, Y., Ma, W., Shi, F. & Du, J. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 67, 167601 (2019).

    [27]

    . Aslam, N. et al. Quantum sensors for biomedical applications. Nat. Rev. Phys. 5, 157 (2023).

    [28]

    . Wu, Y. & Weil, T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. Adv. Sci. 9, 2200059 (2022).

    [29]

    . Barry, J. F. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    [30]

    . Lawson, A. W. & Tang, T. Y. A Diamond Bomb for Obtaining Powder Pictures at High Pressures. Rev. Sci. Instrum. 21, 815 (1950).

    [31]

    . Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65 (1983).

    [32]

    . Gruber, A. et al. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science 276, 2012 (1997).

    [33]

    . Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013).

    [34]

    . Doherty, M. W. et al. Electronic Properties and Metrology Applications of the Diamond NV Center under Pressure. Phys. Rev. Lett. 112, 47601 (2014).

    [35]

    . Shang, Y. X. et al. Magnetic Sensing inside a Diamond Anvil Cell via Nitrogen-Vacancy Center Spins. Chin. Phys. Lett. 36, 086201 (2019).

    [36]

    . Yip, K. Y. et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science 366, 1355 (2019).

    [37]

    . Shelton, D. P., Cabriales, W. & Salamat, A. Magnetometry in a diamond anvil cell using nitrogen vacancy centers in a nanodiamond ensemble. Rev. Sci. Instrum. 95, (2024).

    [38]

    . Hsieh, S. et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science 366, 1349 (2019).

    [39]

    . Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359 (2019).

    [40]

    . Hilberer, A. et al. Enabling quantum sensing under extreme pressure: Nitrogen-vacancy magnetometry up to 130 GPa. Phys. Rev. B 107, L220102 (2023).

    [41]

    . Bhattacharyya, P. et al. Imaging the Meissner effect in hydride superconductors using quantum sensors. Nature 627, 73(2024).

    [42]

    . Wen, J. et al. Probing the Meissner effect in pressurized bilayer nickelate superconductors using diamond quantum sensors. arXiv: 2410, 10275 (2024).

    [43]

    . Meijer, J. et al. Generation of single color centers by focused nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    [44]

    . Lyapin, S. G., Ilichev, I. D., Novikov, A. P., Davydov, V. A. & Agafonov, V. N. Study of optical properties of the NV and SiV centres in diamond at high pressures. Nanosystems: Physics, Chemistry, Mathematics 9, 55 (2018).

    [45]

    . Shang, Y.-X. et al. High-Pressure NMR Enabled by Diamond Nitrogen-Vacancy Centers. arXiv: 2203.10511 (2022).

    [46]

    . Jacques, V. et al. Dynamic Polarization of Single Nuclear Spins by Optical Pumping of Nitrogen-Vacancy Color Centers in Diamond at Room Temperature. Phys. Rev. Lett. 102, 57403 (2009).

    [47]

    . London, P. et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 111, 067601 (2013).

    [48]

    . Liu, G. Q. et al. Protection of centre spin coherence by dynamic nuclear spin polarization in diamond. Nanoscale 6, 10134 (2014).

    [49]

    . Zhang, G., Cheng, Y., Chou, J. P. & Gali, A. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7, 031308 (2020).

    [50]

    . Wang, J. F. et al. Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide. Nat. Mater. 22, 489 (2023).

    [51]

    . Liu, L. et al. Coherent Control and Magnetic Detection of Divacancy Spins in Silicon Carbide at High Pressures. Nano Lett. 22, 9943 (2022).

    [52]

    . He, G. et al. Probing Stress and Magnetism at High Pressures with Two-Dimensional Quantum Sensors. arXiv:2501.03319 (2025).

    [53]

    . Zhong, C. et al. High Spatial Resolution 2D Imaging of Current Density and Pressure for Graphene Devices under High Pressure Using Nitrogen-Vacancy Centers in Diamond. Nano Lett. 24, 4993 (2024).

    [54]

    . Mao, H. K. Pressure-induced hydrogen-dominant high-temperature superconductors. Natl. Sci. Rev. 11, nwae004 (2024).

    [55]

    . Eremets, M. I. The current status and future development of high-temperature conventional superconductivity. Natl. Sci. Rev. 11, nwae047 (2024).

    [56]

    . Hamlin, J. J. Superconductivity near room temperature. Nature 569, 491 (2019).

    [57]

    . Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493 (2023).

    [58]

    . Wang, N. et al. Bulk high-temperature superconductivity in pressurized tetragonal La2PrNi2O7. Nature 634, 579 (2024).

    [59]

    . Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7. arXiv:2311.12361 (2023).

  • [1] XU Jiaxin, XU Lechen, LIU Jingyang, DING Huajian, WANG Qin. Research Progress on Artificial Intelligence Empowered Quantum Communication and Quantum Sensing Systems. Acta Physica Sinica, doi: 10.7498/aps.74.20250322
    [2] Dai Xue-Feng, Gong Tong. Decoupling of Majorana bound states in T-shaped double-quantum-dot structure with ferromagnetic leads. Acta Physica Sinica, doi: 10.7498/aps.73.20231434
    [3] Guo Lin-Lin, Zhao Zi-Tong, Sui Ming-Hong, Wang Peng, Liu Bing-Bing. High-pressure high-temperature induced polymerization of nitrogen molecules under restricted condition. Acta Physica Sinica, doi: 10.7498/aps.73.20240173
    [4] Zeng Qi-Yu, Chen Bo, Kang Dong-Dong, Dai Jia-Yu. Large scale and quantum accurate molecular dynamics simulation: Liquid iron under extreme condition. Acta Physica Sinica, doi: 10.7498/aps.72.20231258
    [5] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, doi: 10.7498/aps.72.20221582
    [6] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, doi: 10.7498/aps.71.20220124
    [7] Guo Yu-Yi, Shi Fu-Kun, Wang Qun, Ji Zhen-Yu, Zhuang Jie. A review on bioelectrical effects of cellular organelles by high voltage nanosecond pulsed electric fields. Acta Physica Sinica, doi: 10.7498/aps.71.20211850
    [8] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, doi: 10.7498/aps.71.20211348
    [9] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, doi: 10.7498/aps.71.20211822
    [10] Liu Gang-Qin. Diamond spin quantum sensing under extreme conditions. Acta Physica Sinica, doi: 10.7498/aps.71.20212072
    [11] Zhang Ruo-Zhou, Qin Ming-Yang, Zhang Lu, You Li-Xing, Dong Chao, Sha Peng, Yuan Jie, Jin Kui. Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique. Acta Physica Sinica, doi: 10.7498/aps.69.20191758
    [12] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.67.20172634
    [13] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20180788
    [14] Chen Chuan-Ting, Yao Gang, Duan Ming-Chao, Guan Dan-Dan, Li Yao-Yi, Zheng Hao, Wang Shi-Yong, Liu Can-Hua, Jia Jin-Feng. In-situ measurement of diamagnetic response of potassium-adsorbed multi-layer FeSe ultrathin films on SrTiO3(001) substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20181522
    [15] Liu Gang-Qin, Xing Jian, Pan Xin-Yu. Quantum control of nitrogen-vacancy center in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20180755
    [16] Zheng Jun, Li Chun-Lei, Yang Xi, Guo Yong. Spin and charge Nernst effect in a four-terminal double quantum dot system. Acta Physica Sinica, doi: 10.7498/aps.66.097302
    [17] Huang Xiao-Li, Wang Xin, Liu Ming-Kun, Liang Yong-Fu, Liu Bing-Bing, Cui Tian. In-situ magnetic measurements of substances under extreme conditions. Acta Physica Sinica, doi: 10.7498/aps.66.037403
    [18] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, doi: 10.7498/aps.64.210201
    [19] Gu Juan, Liang Jiu-Qing. Energy spectrum analysis of donor-center quantum dots. Acta Physica Sinica, doi: 10.7498/aps.54.5335
    [20] Wang Rui-Feng. The dynamical mechanism of A-B effect and its testing scheme. Acta Physica Sinica, doi: 10.7498/aps.54.4532
Metrics
  • Abstract views:  39
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  17 April 2025

/

返回文章
返回