Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diamond spin quantum sensing under extreme conditions

Liu Gang-Qin

Citation:

Diamond spin quantum sensing under extreme conditions

Liu Gang-Qin
PDF
HTML
Get Citation
  • Extreme conditions, such as ultra-low temperatures, high pressures, and strong magnetic fields, are critical to producing and studying exotic states of matter. To measure physical properties under extreme conditions, the advanced sensing schemes are required. As a promising quantum sensor, the diamond nitrogen-vacancy (NV) center can detect magnetic field, electronic field, pressure, and temperature with high sensitivity. Considering its nanoscale spatial resolution and ultra-wide working range, the diamond quantum sensing can play an important role in frontier studies involving extreme conditions. This paper reviews the spin and optical properties of diamond NV center under extreme conditions, including low temperature, high temperature, zero field, strong magnetic fields, and high pressures. The opportunities and challenges of diamond quantum sensing under extreme conditions are discussed. The basic knowledge of spin-based quantum sensing and its applications under extreme conditions are also covered.
      Corresponding author: Liu Gang-Qin, gqliu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. Z200009), Chinese Academy of Sciences (Grant Nos. YJKYYQ20190082, XDB28030000), the National Natural Science Foundation of China (Grant Nos. 11974020, 12022509, 11934018, T2121001), and the National Key Research and Development Program of China (Grants No. 2019YFA0308100).
    [1]

    Norman M R 2011 Science 332 196Google Scholar

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [3]

    Sachdev S, Keimer B 2011 Phys. Today 64 29Google Scholar

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226Google Scholar

    [5]

    Hao N, Hu J 2019 Natl. Sci. Rev. 6 213Google Scholar

    [6]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [7]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [8]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [9]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503Google Scholar

    [10]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [11]

    Degen C L, Reinhard F, Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002Google Scholar

    [12]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [13]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [14]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotechnol. 6 242Google Scholar

    [15]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, others 2008 Nature 455 648Google Scholar

    [16]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [17]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg Lloyd C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [18]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [19]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [20]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C von 1997 Science 276 2012Google Scholar

    [21]

    Steinert S, Ziem F, Hall L T, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L, Wrachtrup J 2013 Nat. Commun. 4 1607Google Scholar

    [22]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574Google Scholar

    [23]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601Google Scholar

    [24]

    Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D J, Taminiau T H 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Astner T, Gugler J, Angerer A, Wald S, Putz S, Mauser N J, Trupke M, Sumiya H, Onoda S, Isoya J, Schmiedmayer J, Mohn P, Majer J 2018 Nat. Mater. 17 313Google Scholar

    [26]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [27]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [28]

    Liu G Q, Feng X, Wang N, Li Q, Liu R B 2019 Nat. Commun. 10 1344Google Scholar

    [29]

    Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A, Budker D 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [30]

    Vetter P J, Marshall A, Genov G T, Weiss T F, Striegler N, Großmann E F, Casado S O, Cerrillo J, Prior J, Neumann P, Jelezko F 2021 arXiv: 2107.10537[quant-ph]

    [31]

    Wang N, Liu C F, Fan J W, Feng X, Leong W H, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2022 Phys. Rev. Res. 4 013098Google Scholar

    [32]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94Google Scholar

    [33]

    Aslam N, Pfender M, Stöhr R, Neumann P, Scheffler M, Sumiya H, Abe H, Onoda S, Ohshima T, Isoya J, Wrachtrup J 2015 Rev. Sci. Instrum. 86 064704Google Scholar

    [34]

    Fortman B, Mugica-Sanchez L, Tischler N, Selco C, Hang Y, Holczer K, Takahashi S 2021 J. Appl. Phys. 130 083901Google Scholar

    [35]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65Google Scholar

    [36]

    Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, Agafonov V N 2018 Nanosyst. Physics, Chem. Math. 9 55

    [37]

    Shang Y X, Hong F, Dai J H, Yu Hui, Lu Y N, Liu E K, Yu X H, Liu G Q, Pan X Y 2019 Chin. Phys. Lett. 36 086201Google Scholar

    [38]

    Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, Curro N J 2017 Appl. Phys. Lett. 111 221903Google Scholar

    [39]

    Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, Liu G Q 2022 arXiv:2203.10511[quant-ph]

    [40]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [41]

    Marchiori E, Ceccarelli L, Rossi N, Lorenzelli L, Degen C L, Poggio M 2021 Nat. Rev. Phys. 4 49Google Scholar

    [42]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Müller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677Google Scholar

    [43]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [44]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [45]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563Google Scholar

    [46]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1Google Scholar

    [47]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 8244Google Scholar

    [48]

    赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰 2021 物理学报 70 213301Google Scholar

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [49]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Oliveira F F de, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [50]

    Kamarád J, Arnold Z, Schneider J 1987 J. Magn. Magn. Mater. 67 29Google Scholar

    [51]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359Google Scholar

    [52]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, MacHado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349Google Scholar

    [53]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355Google Scholar

    [54]

    Wang P, Chen C, Liu R B, Wang P, Chen C, Liu R B 2021 Chin. Phys. Lett. 38 010301Google Scholar

  • 图 1  极端条件下的金刚石自旋量子传感 (a) 作为灵敏的微纳尺度量子传感方案, 金刚石氮空位中心可在极其宽泛的温度、压强、磁场下工作; (b)典型的自旋量子传感包含量子态制备、与待测对象的相互作用、量子态读出三部分

    Figure 1.  Diamond quantum sensing under extreme conditions. (a) As nanoscale quantum sensors, diamond nitrogen-vacancy centers can work under wide ranges of temperature, pressure, and magnetic field. (b) A typical spin-based quantum sensing process contains three parts: preparation of the quantum state, interaction between the sensor and the target, and readout of the quantum state.

    图 2  金刚石氮空位中心自旋量子传感工作原理 (a) 自旋能级结构和光学跃迁; (b) 外场对金刚石氮空位中心基态能级的影响(从上至下: 压强、温度、磁场)

    Figure 2.  Working principle of diamond quantum sensing: (a) The energy level structure and optical transitions of a diamond NV center; (b) the energy levels of NV ground state as function of external perturbations (from top to bottom: pressure, temperature, and magnetic field).

    图 3  低温条件对金刚石氮空位中心自旋性质的影响 (a) 自旋弛豫速率随温度变化规律 [23]; (b) 3.7 K下NV中心自旋弛豫时间$ {T}_{1} $可达1 h [24]

    Figure 3.  NV spin properties at low temperatures: (a) Spin relaxation rate as function of temperature [23]; (b) at 3.7 K, the T1 of an NV electron spin reaches 1 hour [24].

    图 4  高温下金刚石NV中心自旋量子调控[28] (a) 基于原位激光加热的快速温控; (b) 高温光探磁共振脉冲序列; (c) 零场劈裂随温度变化规律; (d) 自旋弛豫速率随温度的变化规律; (e) 高温下自旋Rabi振荡

    Figure 4.  Quantum control of diamond NV centers under high temperatures [28]: (a) Fast temperature control by in-situ laser heating and cooling; (b) pulse sequence for high-temperature ODMR; (c) temperature dependence of zero-field splitting of NV centers; (d) temperature dependence of spin relaxation rate; (e) Rabi oscillation under high temperatures.

    图 5  零场和低磁场下金刚石自旋量子调控 (a) 零场附近基态能级简并情况[29]; (b)基于近邻强耦合13C核自旋的零场量子传感方案[31]; (c) 基于NV自旋三能级结构的零场量子传感方案[30]

    Figure 5.  Quantum control of diamond spin under zero and low magnetic fields: (a) Energy levels of NV ground state at near zero fields[29]; (b) zero-field magnetometry using hyperfine-biased NV centers[31]; (c) zero-field quantum sensing by exploiting the spin S = 1 nature of the NV center[30].

    图 6  强磁场下的金刚石自旋量子调控[33] (a) 实验系统示意图; (b) 高频微波波导示意图; (c)共面波导传输线和金刚石装载示意; (d)金刚石近邻共面波导结构的荧光扫描图; (e) 2.78 T磁场下的单个金刚石NV中心光探磁共振谱线和(f) Rabi振荡

    Figure 6.  Quantum control of diamond NV center under strong magnetic field [33]: (a) Experimental setup of high-field ODMR; (b) schematic of the microwave cavity resonator and (c) schematic of coplanar waveguide (CPW) transition element and diamond loading; (d) confocal image of the CPW resonator close to the diamond; (e) ODMR spectrum and (f) Rabi oscillation of an NV center at 2.78 T.

    图 7  高压下金刚石NV自旋量子调控 (a) 金刚石对顶砧中的自旋量子传感 [17]; (b)压力对金刚石NV中心基态能级的影响; (c) 不同压强下的光探磁共振谱线; (d) 零场劈裂随压强变化关系; (e)不同压强下的NV中心零声子谱线及其(f)随压强变化规律[36]; (g)—(i) 高压下的自旋Rabi振荡、自旋回波信号和自旋弛豫信号 [37]

    Figure 7.  Quantum control of diamond NV center under high pressures: (a) Quantum sensing inside diamond anvil cell [17]; (b) energy levels of NV ground states under pressure; (c) ODMR spectra under different pressures; (d) dependence of zero-field splitting on pressures; (e) zero-phonon line and (f) its dependence on pressures [36]; (g)–(i) Rabi oscillation, spin echo, and spin relaxation of NV centers under high pressures [37].

    图 8  低温下金刚石自旋量子传感应用 (a) 7 K下二维材料CrI3的磁性成像 [40]; (b) 4.2 K下超导薄膜YBCO的磁性成像[41]

    Figure 8.  Applications of diamond quantum sensing at low temperatures: (a) Map of magnetization distribution of a 2D material, CrI3, at temperature of 7 K [40]; (b) magnetic vortex imaging of a thin-film superconductor, YBCO, at temperature of 4.2 K[41].

    图 9  高温下金刚石自旋量子传感应用[28] (a) 不同温度下单个镍纳米颗粒近邻金刚石中集群NV的光探磁共振谱线; (b) 单个纳米颗粒磁性相变过程, 其中插图为样品扫描电子显微镜图片

    Figure 9.  Applications of diamond quantum sensing at high temperatures [28]: (a) ODMR spectra of a nano-diamond close to a nickel nanoparticle at different temperatures; (b) the magnetic phase transition of a single nickel nanoparticle, where the insert is SEM image of the sample.

    图 10  极限磁场下的金刚石自旋量子传感应用 (a) 零场下(0.01 G) 金刚石NV自旋辅助实现的EPR谱线 [47]; (b) 强磁场(3 T)下NV自旋辅助实现的NMR谱线[49]

    Figure 10.  Applications of diamond quantum sensing at zero and high magnetic fields: (a) Zero-field (0.01 G) EPR enabled by diamond NV center[47]; (b) NV-based NMR at 3 T [49].

    图 11  高压下金刚石自旋量子传感应用 (a)铷铁硼(NdFeB) [37]和(b)单质铁(Fe)的压强驱动磁相变测量[51,52]; (c) 高压腔内压强成像[52]; (d) BaFe2(As0.59P0.41)2超导相图 [53]; (e) 钆(Gd)磁性的压强-温度相图 [52]

    Figure 11.  Applications of diamond quantum sensing under high pressures: (a), (b) The pressure induced magnetic phase transition of (a) NdFeB [37] and (b) Fe [51,52]; (c) pressure imaging inside diamond anvil cells[52]; (d), (e) the temperature-pressure phase diagram of (d) superconductor BaFe2(As0.59P0.41)2 [53] and (e) Gd foil [52].

  • [1]

    Norman M R 2011 Science 332 196Google Scholar

    [2]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [3]

    Sachdev S, Keimer B 2011 Phys. Today 64 29Google Scholar

    [4]

    Coleman P, Schofield A J 2005 Nature 433 226Google Scholar

    [5]

    Hao N, Hu J 2019 Natl. Sci. Rev. 6 213Google Scholar

    [6]

    Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, Dias R P 2020 Nature 586 373Google Scholar

    [7]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001Google Scholar

    [8]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I 2019 Nature 569 528Google Scholar

    [9]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Reports Prog. Phys. 77 056503Google Scholar

    [10]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [11]

    Degen C L, Reinhard F, Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002Google Scholar

    [12]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [13]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [14]

    Zhao N, Hu J L, Ho S W, Wan J T K, Liu R B 2011 Nat. Nanotechnol. 6 242Google Scholar

    [15]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, others 2008 Nature 455 648Google Scholar

    [16]

    Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar

    [17]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg Lloyd C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [18]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [19]

    Dolde F, Fedder H, Doherty M W, Nöbauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [20]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, Borczyskowski C von 1997 Science 276 2012Google Scholar

    [21]

    Steinert S, Ziem F, Hall L T, Zappe A, Schweikert M, Götz N, Aird A, Balasubramanian G, Hollenberg L, Wrachtrup J 2013 Nat. Commun. 4 1607Google Scholar

    [22]

    Robledo L, Childress L, Bernien H, Hensen B, Alkemade P F A, Hanson R 2011 Nature 477 574Google Scholar

    [23]

    Jarmola A, Acosta V M, Jensen K, Chemerisov S, Budker D 2012 Phys. Rev. Lett. 108 197601Google Scholar

    [24]

    Abobeih M H, Cramer J, Bakker M A, Kalb N, Markham M, Twitchen D J, Taminiau T H 2018 Nat. Commun. 9 1Google Scholar

    [25]

    Astner T, Gugler J, Angerer A, Wald S, Putz S, Mauser N J, Trupke M, Sumiya H, Onoda S, Isoya J, Schmiedmayer J, Mohn P, Majer J 2018 Nat. Mater. 17 313Google Scholar

    [26]

    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto S, Nakano H, Munro W J, Tokura Y, Everitt M S, Nemoto K, Kasu M, Mizuochi N, Semba K 2011 Nature 478 221Google Scholar

    [27]

    Toyli D M, Christle D J, Alkauskas A, Buckley B B, Van de Walle C G, Awschalom D D 2012 Phys. Rev. X 2 031001Google Scholar

    [28]

    Liu G Q, Feng X, Wang N, Li Q, Liu R B 2019 Nat. Commun. 10 1344Google Scholar

    [29]

    Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A, Budker D 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [30]

    Vetter P J, Marshall A, Genov G T, Weiss T F, Striegler N, Großmann E F, Casado S O, Cerrillo J, Prior J, Neumann P, Jelezko F 2021 arXiv: 2107.10537[quant-ph]

    [31]

    Wang N, Liu C F, Fan J W, Feng X, Leong W H, Finkler A, Denisenko A, Wrachtrup J, Li Q, Liu R B 2022 Phys. Rev. Res. 4 013098Google Scholar

    [32]

    Epstein R J, Mendoza F M, Kato Y K, Awschalom D D 2005 Nat. Phys. 1 94Google Scholar

    [33]

    Aslam N, Pfender M, Stöhr R, Neumann P, Scheffler M, Sumiya H, Abe H, Onoda S, Ohshima T, Isoya J, Wrachtrup J 2015 Rev. Sci. Instrum. 86 064704Google Scholar

    [34]

    Fortman B, Mugica-Sanchez L, Tischler N, Selco C, Hang Y, Holczer K, Takahashi S 2021 J. Appl. Phys. 130 083901Google Scholar

    [35]

    Jayaraman A 1983 Rev. Mod. Phys. 55 65Google Scholar

    [36]

    Lyapin S G, Ilichev I D, Novikov A P, Davydov V A, Agafonov V N 2018 Nanosyst. Physics, Chem. Math. 9 55

    [37]

    Shang Y X, Hong F, Dai J H, Yu Hui, Lu Y N, Liu E K, Yu X H, Liu G Q, Pan X Y 2019 Chin. Phys. Lett. 36 086201Google Scholar

    [38]

    Steele L G, Lawson M, Onyszczak M, Bush B T, Mei Z, Dioguardi A P, King J, Parker A, Pines A, Weir S T, Evans W, Visbeck K, Vohra Y K, Curro N J 2017 Appl. Phys. Lett. 111 221903Google Scholar

    [39]

    Shang Y X, Hong F, Dai J H, Lu Y N, Yu H, Yu Y H, Yu X H, Pan X Y, Liu G Q 2022 arXiv:2203.10511[quant-ph]

    [40]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [41]

    Marchiori E, Ceccarelli L, Rossi N, Lorenzelli L, Degen C L, Poggio M 2021 Nat. Rev. Phys. 4 49Google Scholar

    [42]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Müller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677Google Scholar

    [43]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar

    [44]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar

    [45]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563Google Scholar

    [46]

    Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1Google Scholar

    [47]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 8244Google Scholar

    [48]

    赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰 2021 物理学报 70 213301Google Scholar

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [49]

    Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Oliveira F F de, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar

    [50]

    Kamarád J, Arnold Z, Schneider J 1987 J. Magn. Magn. Mater. 67 29Google Scholar

    [51]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359Google Scholar

    [52]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, MacHado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349Google Scholar

    [53]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355Google Scholar

    [54]

    Wang P, Chen C, Liu R B, Wang P, Chen C, Liu R B 2021 Chin. Phys. Lett. 38 010301Google Scholar

  • [1] Dai Xue-Feng, Gong Tong. Decoupling of Majorana bound states in T-shaped double-quantum-dot structure with ferromagnetic leads. Acta Physica Sinica, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [3] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [4] Zeng Qi-Yu, Chen Bo, Kang Dong-Dong, Dai Jia-Yu. Large scale and quantum accurate molecular dynamics simulation: Liquid iron under extreme condition. Acta Physica Sinica, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [5] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [7] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [8] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [9] Liu Gang-Qin, Xing Jian, Pan Xin-Yu. Quantum control of nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [10] Huang Xiao-Li, Wang Xin, Liu Ming-Kun, Liang Yong-Fu, Liu Bing-Bing, Cui Tian. In-situ magnetic measurements of substances under extreme conditions. Acta Physica Sinica, 2017, 66(3): 037403. doi: 10.7498/aps.66.037403
    [11] Hu Cui-E, Zeng Zhao-Yi, Cai Ling-Cang. Dynamic stability of Zr under high pressure and high temperature. Acta Physica Sinica, 2015, 64(4): 046401. doi: 10.7498/aps.64.046401
    [12] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [13] Li Min, Ni Qi-Liang, Chen Bo. Calculation of quantum efficiency of alkali halide photocathode materials in the extreme ultraviolet region. Acta Physica Sinica, 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [14] Zhang Song-Jun, Jiang Jian-Jun, Liu Yong-Jun. Quantum phase transition as a result of magnetic frustrations in a ferrimagnetic Heisenberg system. Acta Physica Sinica, 2008, 57(1): 531-534. doi: 10.7498/aps.57.531
    [15] Gu Juan, Liang Jiu-Qing. Energy spectrum analysis of donor-center quantum dots. Acta Physica Sinica, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [16] Zhang De-Xing. The research of properties of the quantum conditional amplitude operator. Acta Physica Sinica, 2004, 53(6): 1647-1651. doi: 10.7498/aps.53.1647
    [17] LI JING-DE, CHEN MIN, FANG CHUANG-DAI, LI ZHI-QIANG, LEI DE-MIN. DIELECTRIC SPECTROSCOPY INVESTIGATION ON POLAR PHASE TRANSITIONS. Acta Physica Sinica, 1999, 48(4): 721-728. doi: 10.7498/aps.48.721
    [18] ZHU DONG-PEI, WANG REN-CHUAN, YANG LI. LUND MODEL AND THE SPECTRA OF THE ULTRA-RELATIVISTIC QUANTUM SYSTEM. Acta Physica Sinica, 1996, 45(2): 185-191. doi: 10.7498/aps.45.185
    [19] WAGN JI-FANG, WANG RU-JU, M. H. MANGHNANI, XIONG DA-HE. THE ELASTIC PROPERTIES OF COBALT OXIDE IN MAGNETIC PHASE TRANSITION. Acta Physica Sinica, 1991, 40(12): 1966-1972. doi: 10.7498/aps.40.1966
    [20] THE HOT-PRESSED FERrITE RESEARCH GROUP, DEPARTMENT OF PHYSIOS. PREPARATION AND MAGNETIC PROPERTIES OF HOT-PRESSED FERRITES. Acta Physica Sinica, 1974, 23(6): 1-12. doi: 10.7498/aps.23.1-3
Metrics
  • Abstract views:  7196
  • PDF Downloads:  371
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2021
  • Accepted Date:  04 March 2022
  • Available Online:  09 March 2022
  • Published Online:  20 March 2022

/

返回文章
返回