-
Water is one of the most important substances in the world. It is a crucial issue to study the dynamics of water molecules at interfaces or in the confined systems. In recent years, the emerging magnetic resonance technique based on nitrogen-vacancy (NV) center has allowed us to observe the nanoscale nuclear magnetic signal and temperature simultaneously. Here we succeed in measuring the nuclear magnetic resonance (NMR) signals of nanoscale solid and liquid water on diamond surface by NV center, and observing the solid-liquid phase transition of these nano-water by temperature control. This work demonstrates that the nano-NMR technique based on NV centers can probe the dynamics behavior of nanoscale materials effectively, providing a new way for studying the nanoscale confined systems.
-
Keywords:
- nitrogen-vacancy center /
- quantum sensing /
- nanoscale nuclear magnetic resonance /
- solid-liquid phase transitions of water
[1] Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321Google Scholar
[2] Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80Google Scholar
[3] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar
[4] Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L 2016 Chem. Rev. 116 7570Google Scholar
[5] Dubochet J, Lepault J, Freeman R, Berriman J A, Homo J C 1982 J. Microsc. 128 219Google Scholar
[6] Sotak C H 2004 Neurochem. Int. 45 569Google Scholar
[7] Marcus Y, Hefter G 2006 Chem. Rev. 106 4585Google Scholar
[8] Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313Google Scholar
[9] Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901Google Scholar
[10] Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar
[11] Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar
[12] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar
[13] Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135Google Scholar
[14] Lovchinsky I, Sushkov A O, Urbach E, Leon N P d, Choi S, Greve K D, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar
[15] Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar
[16] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[17] Wissner-Gross A D, Kaxiras E 2007 Phys. Rev. E 76 020501Google Scholar
[18] Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar
[19] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar
[20] Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar
[21] Herbschleb E D, Kato H, Maruyama Y, Danjo T, Makino T, Yamasaki S, Ohki I, Hayashi K, Morishita H, Fujiwara M, Mizuochi N 2019 Nat. Commun. 10 3766Google Scholar
[22] McGuinness L P, Hall L T, Stacey A, Simpson D A, Hill C D, Cole J H, Ganesan K, Gibson B C, Prawer S, Mulvaney P, Jelezko F, Wrachtrup J, Scholten R E, Hollenberg L C L 2013 New J. Phys. 15 073042Google Scholar
[23] Taminiau T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V, Hanson R 2012 Phys. Rev. Lett. 109 137602Google Scholar
[24] Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1651Google Scholar
[25] Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat. Commun. 6 8527Google Scholar
[26] Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar
[27] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar
[28] Shields B, Unterreithmeier Q, de Leon N, Park H, Lukin M 2015 Phys. Rev. Lett. 114 136402Google Scholar
-
图 1 实验装置示意图. 从上到下分别为半导体制冷片、铜制导热板、共面波导、封装好的样品水、含有NV色心的金刚石薄膜、玻璃片, 插图为NV色心的结构和基本的动力学去耦序列
Figure 1. Schematic of the experimental setup. From top to bottom are semiconductor cooler, copper plate, waveguide, sample water, diamond film with NV center and glass sheet. The inset shows the structure of the NV center and the dynamic decoupling pulse sequence.
图 2 利用NV色心测量水分子的示意图, 该方法得到的氢核共振谱线展宽受限于核自旋的弛豫时间
$T_2^{*}$ 、NV色心的相干时间$T_{\rm{NV}}$ 以及分子扩散或磁偶极相互作用 (a)测量液态水示意图, 扩散会导致待测分子离开探测区域, 信号变弱, 谱线增宽; (b)测量固态水示意图, 扩散作用消失, 核自旋间的偶极相互作用会引起谱线的展宽Figure 2. Schematic of measuring water molecules by NV center. The hydrogen NMR spectra line broadening obtained is limited by the relaxation time
$T_2^{*}$ of nuclear spins, the coherence time$T_{\rm{NV}}$ of NV center and the diffusion or magnetic dipole interactions: (a) Schematic of measurements of liquid water, where diffusion causes the signal molecule to leave detection region, weakening the signal amplitude and broadening the spectral line width; (b) schematic of measurements of solid water, where dipole interactions between the nuclear spins cause the broadening of the spectra.图 3 固-液环境下水分子的NMR谱和关联谱信号 (a) 上: 周期性动力学去耦脉冲序列; 中:
$\Delta D$ 值为1.27 MHz (11.1 ℃) 的液态环境下水分子中质子的纳米NMR谱, 线宽为53(9) kHz; 下:$\Delta D$ 值为3.18 MHz (–8.8 ℃)的固态环境下水分子中质子的纳米NMR谱, 线宽为33(5) kHz; (b)上: 关联谱脉冲序列; 中:$\Delta D$ 值为1.27 MHz的液态环境下水分子中质子的时域关联谱信号, 其衰减时间为12(3) μs; 下:$\Delta D$ 值为3.18 MHz的固态环境下水分子中质子的时域关联谱信号, 其衰减时间为46(11) μsFigure 3. NMR spectra and correlation spectroscopy signals of water molecules in a solid and liquid environment. (a) Top: periodic dynamic decoupling pulse sequence; middle: nano-NMR spectrum of protons in water molecules with a linewidth of 53(9) kHz in a liquid environment at
$\Delta D$ value of 1.27 MHz (11.1 ℃); bottom: nano-NMR spectrum of protons in water molecules with a linewidth of 33(5) kHz in a solid environment at$\Delta D$ value of 3.18 MHz (–8.8 ℃); (b) top: correlation spectroscopy pulse sequence; middle: time-domain correlation spectroscopy signal of protons in water molecules with a decay time of 12(3) μs in a liquid environment at$\Delta D$ value of 1.27 MHz; time-domain correlation spectroscopy signal of protons in water molecules with a decay time of 46(11) μs in a liquid environment at$\Delta D$ value of 3.18 MHz.图 4 (a) NV色心的基态能级的塞曼劈裂; (b)利用ODMR共振波谱技术, 可以得到NV色心电子自旋态
$m_{{\rm{s}}}=0, -1$ 以及$m_{{\rm{s}}}=0, +1$ 之间的跃迁频率, 进而测量出D值. 上、中、下图分别为连续波谱序列、室温(19 ℃)和温度为11.1 ℃时测量得到的共振波谱; (c) NV色心零场劈裂变化值$\Delta {{D}}$ 随温度的变化关系, 对应的${\rm{d}} D / {\rm{d}} T= - 87(12)\; \rm{kHz} / \rm{K}$ Figure 4. (a) Zeeman splitting of the ground state energy level of the NV center. (b) Using ODMR spectroscopy technique, we can obtain the frequencies between electron spin states
$m_{{\rm{s}}}=0, -1$ and$m_{{\rm{s}}}=0, +1$ , then the zero splitting D is measured. From top to bottom are the sequence of ODMR spectroscopy, and two spectra at room temperature (19 ℃) and low temperature (11.1 ℃), respectively. (c) The variation of zero-field splitting variation$\Delta {{D}}$ as a function of temperature, with${\rm{d }}D / {\rm{d}} T=-87(12)\; \rm{kHz} / \rm{K}$ . -
[1] Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G, Jiang Y 2016 Science 352 321Google Scholar
[2] Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80Google Scholar
[3] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V 2015 Nature 519 443Google Scholar
[4] Amann-Winkel K, Bellissent-Funel M C, Bove L E, Loerting T, Nilsson A, Paciaroni A, Schlesinger D, Skinner L 2016 Chem. Rev. 116 7570Google Scholar
[5] Dubochet J, Lepault J, Freeman R, Berriman J A, Homo J C 1982 J. Microsc. 128 219Google Scholar
[6] Sotak C H 2004 Neurochem. Int. 45 569Google Scholar
[7] Marcus Y, Hefter G 2006 Chem. Rev. 106 4585Google Scholar
[8] Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313Google Scholar
[9] Guo J, Bian K, Lin Z, Jiang Y 2016 J. Chem. Phys. 145 160901Google Scholar
[10] Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar
[11] Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561Google Scholar
[12] Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557Google Scholar
[13] Shi F, Zhang Q, Wang P, Sun H, Wang J, Rong X, Chen M, Ju C, Reinhard F, Chen H, Wrachtrup J, Wang J, Du J 2015 Science 347 1135Google Scholar
[14] Lovchinsky I, Sushkov A O, Urbach E, Leon N P d, Choi S, Greve K D, Evans R, Gertner R, Bersin E, Müller C, McGuinness L, Jelezko F, Walsworth R L, Park H, Lukin M D 2016 Science 351 836Google Scholar
[15] Aslam N, Pfender M, Neumann P, Reuter R, Zappe A, Fávaro de Oliveira F, Denisenko A, Sumiya H, Onoda S, Isoya J, Wrachtrup J 2017 Science 357 67Google Scholar
[16] Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar
[17] Wissner-Gross A D, Kaxiras E 2007 Phys. Rev. E 76 020501Google Scholar
[18] Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S, Budker D 2010 Phys. Rev. Lett. 104 070801Google Scholar
[19] Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar
[20] Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar
[21] Herbschleb E D, Kato H, Maruyama Y, Danjo T, Makino T, Yamasaki S, Ohki I, Hayashi K, Morishita H, Fujiwara M, Mizuochi N 2019 Nat. Commun. 10 3766Google Scholar
[22] McGuinness L P, Hall L T, Stacey A, Simpson D A, Hill C D, Cole J H, Ganesan K, Gibson B C, Prawer S, Mulvaney P, Jelezko F, Wrachtrup J, Scholten R E, Hollenberg L C L 2013 New J. Phys. 15 073042Google Scholar
[23] Taminiau T H, Wagenaar J J T, van der Sar T, Jelezko F, Dobrovitski V V, Hanson R 2012 Phys. Rev. Lett. 109 137602Google Scholar
[24] Laraoui A, Dolde F, Burk C, Reinhard F, Wrachtrup J, Meriles C A 2013 Nat. Commun. 4 1651Google Scholar
[25] Staudacher T, Raatz N, Pezzagna S, Meijer J, Reinhard F, Meriles C A, Wrachtrup J 2015 Nat. Commun. 6 8527Google Scholar
[26] Wang N, Liu G Q, Leong W H, Zeng H, Feng X, Li S H, Dolde F, Fedder H, Wrachtrup J, Cui X D, Yang S, Li Q, Liu R B 2018 Phys. Rev. X 8 011042Google Scholar
[27] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar
[28] Shields B, Unterreithmeier Q, de Leon N, Park H, Lukin M 2015 Phys. Rev. Lett. 114 136402Google Scholar
Catalog
Metrics
- Abstract views: 5979
- PDF Downloads: 278
- Cited By: 0