Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanoscale zero-field detection based on single solid-state spins in diamond

Zhao Peng-Ju Kong Fei Li Rui Shi Fa-Zhan Du Jiang-Feng

Citation:

Nanoscale zero-field detection based on single solid-state spins in diamond

Zhao Peng-Ju, Kong Fei, Li Rui, Shi Fa-Zhan, Du Jiang-Feng
PDF
HTML
Get Citation
  • Characterizing the properties of matter at a single-molecule level is highly significant in today’s science, such as biology, chemistry, and materials science. The advent of generalized nanoscale sensors promises to achieve a long-term goal of material science, which is the analysis of single-molecule structures in ambient environments. In recent years, the nitrogen-vacancy (NV) color centers in diamond as solid-state spins have gradually developed as nanoscale sensors with both high spatial resolution and high detection sensitivity. Owing to the nondestructive and non-invasive properties, the NV color centers have excellent performance in single-molecule measurements. So far, the NV centers have achieved high sensitivity in the detection of many physical quantities such as magnetic field, electric field, and temperature, showing their potential applications in versatile quantum sensors. The combination with the cross measurements from multiple perspectives is conducible to deepening the knowledge and understanding the new substances, materials, and phenomena. Starting from the microstructure of NV sensors, several detections under the special magnetic field condition of zero field, including zero-field paramagnetic resonance detection and electric field detection, are introduced in this work.
      Corresponding author: Shi Fa-Zhan, fzshi@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306600, 2016YFA0502400), the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 31971156), the Chinese Academy of Scineces (Grant Nos. GJJSTD20170001, QYZDY-SSW-SLH004, YIPA2015370), the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY050000), and the USTC Research Funds of the Double First-Class Initiative, China (Grant No. YD2340002004)
    [1]

    Mino L, Borfecchia E, Segura-Ruiz J, Giannini C, Martinez-Criado G, Lamberti C 2018 Rev. Mod. Phys. 90 025007Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Methods Primers 1 36

    [3]

    Xu K, Babcock H P, Zhuang X 2012 Nat. Methods 9 185Google Scholar

    [4]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [5]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C 2013 Phys. Rep. 528 1Google Scholar

    [6]

    Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P, Lukin M 2007 Science 316 1312Google Scholar

    [7]

    Waldherr G, Wang Y, Zaiser S, et al. 2014 Nature 506 204Google Scholar

    [8]

    Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901Google Scholar

    [9]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [10]

    Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M, Walsworth R L 2020 Rev. Mod. Phys. 92 015004Google Scholar

    [11]

    Mitchell M W, Alvarez S P 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [12]

    Balasubramanian G, Chan I, Kolesov R, et al. 2008 Nature 455 648Google Scholar

    [13]

    Maze J R, Stanwix P L, Hodges J S, et al. 2008 Nature 455 644Google Scholar

    [14]

    Shi F, Zhang Q, Wang P, et al. 2015 Science 347 1135Google Scholar

    [15]

    Lovchinsky I, Sushkov A, Urbach E, et al. 2016 Science 351 836Google Scholar

    [16]

    Dolde F, Fedder H, Doherty M W, et al. 2011 Nat. Phys. 7 459Google Scholar

    [17]

    Barson M S, Peddibhotla P, Ovartchaiyapong P, et al. 2017 Nano Lett. 17 1496Google Scholar

    [18]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [19]

    Dolde F, Doherty M W, Michl J, et al. 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [20]

    Barry J F, Turner M J, Schloss J M, Glenn D R, Song Y, Lukin M D, Park H, Walsworth R L 2016 Proc. Natl. Acad. Sci. 113 14133Google Scholar

    [21]

    Choi J, Zhou H, Landig R, et al. 2020 Proc. Natl. Acad. Sci. 117 14636Google Scholar

    [22]

    Fujiwara M, Sun S, Dohms A, et al. 2020 Sci. Adv. 6 eaba9636Google Scholar

    [23]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [24]

    Shi F, Kong F, Zhao P, et al. 2018 Nat. Methods 15 697Google Scholar

    [25]

    Zheng H, Xu J, Iwata G Z, et al. 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [26]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563

    [27]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 eaaz8244Google Scholar

    [28]

    Li R, Kong F, Zhao P, et al. 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [29]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C 2011 New J. Phys. 13 025019Google Scholar

    [30]

    Gali A, Simon T, Lowther J 2011 New J. Phys. 13 025016Google Scholar

    [31]

    Batalov A, Zierl C, Gaebel T, Neumann P, Chan I Y, Balasubramanian G, Hemmer P, Jelezko F, Wrachtrup J 2008 Phys. Rev. Lett. 100 077401Google Scholar

    [32]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [33]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [34]

    Mittiga T, Hsieh S, Zu C, et al. 2018 Phys. Rev. Lett. 121 246402Google Scholar

    [35]

    Broadway D A, Johnson B, Barson M, et al. 2019 Nano Lett. 19 4543Google Scholar

    [36]

    Hsieh S, Bhattacharyya P, Zu C, et al. 2019 Science 366 1349Google Scholar

    [37]

    Toyli D M, Charles F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [38]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [39]

    Clore G M, Gronenborn A M 1991 Science 252 1390Google Scholar

    [40]

    Borbat P, Costa-Filho A, Earle K, Moscicki J, Freed J 2001 Science 291 266Google Scholar

    [41]

    Sarkar R, Ahuja P, Vasos P R, Bodenhausen G 2010 Phys. Rev. Lett. 104 053001Google Scholar

    [42]

    Harty T, Allcock D, Ballance C J, Guidoni L, Janacek H, Linke N, Stacey D, Lucas D 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [43]

    Wolfowicz G, Tyryshkin A M, George R E, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L, Lyon S A, Morton J J 2013 Nat. Nanotechnol. 8 561Google Scholar

    [44]

    Emondts M, Ledbetter M P, Pustelny S, Theis T, Patton B, Blanchard J W, Butler M C, Budker D, Pines A 2014 Phys. Rev. Lett. 112 077601Google Scholar

    [45]

    McConnell H, Thompson D, Fessenden R W 1959 Proc. Natl. Acad. Sci. U.S.A. 45 1600Google Scholar

    [46]

    Cole T, Kushida T, Heller H C 1963 J. Chem. Phys. 38 2915Google Scholar

    [47]

    Erickson L E 1966 Phys. Rev. 143 295Google Scholar

    [48]

    Neumann P, Kolesov R, Naydenov B, et al. 2010 Nat. Phys. 6 249Google Scholar

    [49]

    Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P, Walsworth R L 2013 Phys. Rev. Lett. 110 157601Google Scholar

    [50]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [51]

    Tamarat P, Gaebel T, Rabeau J, et al. 2006 Phys. Rev. Lett. 97 083002Google Scholar

    [52]

    Acosta V, Santori C, Faraon A, et al. 2012 Phys. Rev. Lett. 108 206401Google Scholar

    [53]

    Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457

    [54]

    Xu X, Wang Z, Duan C, et al. 2012 Phys. Rev. Lett. 109 070502Google Scholar

    [55]

    Broadway D A, Dontschuk N, Tsai A, et al. 2018 Nat. Electron. 1 502Google Scholar

    [56]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [57]

    Gross I, Akhtar W, Garcia V, et al. 2017 Nature 549 252Google Scholar

    [58]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [59]

    Oberg L M, de Vries M O, Hanlon L, Strazdins K, Barson M S, Doherty M, Wrachtrup J 2020 Phys. Rev. Appl. 14 014085Google Scholar

    [60]

    Ofori-Okai B, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B, Groot-Berning K, Meijer J, Degen C 2012 Phys. Rev. B 86 081406Google Scholar

    [61]

    Sangtawesin S, Dwyer B L, Srinivasan S, et al. 2019 Phys. Rev. X 9 031052

  • 图 1  (a)金刚石的晶格结构; (b) NV色心的能级结构和光跃迁过程

    Figure 1.  (a) Crystal lattice structure of diamond; (b) energy level structure and optical transition processes of NV color centers.

    图 2  非零场(a)和零场(b)方法对比. θ是分子主轴和外磁场的夹角. 非零场下, 谱峰位置随角度变化, 但是零场谱位置始终保持不变

    Figure 2.  Comparison of non-zero-field (a) and zero-field (b) methods. θ is the angle between the principle axis of the molecule and the external magnetic field. The position of the spectral peak varies with the angle in the non-zero field, but is always constant in the zero field.

    图 3  1/2核自旋和电子自旋耦合系统能级示意图

    Figure 3.  Energy levels of 1/2 nuclear spin and 1/2 electron spin coupled system.

    图 4  微波驱动下, NV缀饰态能级和目标电子发生共振. 当目标自旋能级差$\Delta\omega=\varOmega/2$时, 就会和NV之间发生极化转移

    Figure 4.  NV is driven by microwaves, and the dressed state energy levels resonate with the target spin. When the target spin energy level difference $\Delta\omega=\varOmega/2$, then polarization transfer between NV and target spin occurs.

    图 5  15N-P1中心零场顺磁共振谱[26]. 上面是spin-locking序列, 通过改变驱动功率$\varOmega $来扫描频率. 下面是实验结果

    Figure 5.  Zero-field paramagnetic resonance spectrum of 15N-P1 center. Top, spin-locking sequence, by changing the driving power $\varOmega $ to scan the frequency. Bottom, the experimental results.

    图 6  零场顺磁共振关联谱序列. 虚线方框内表示射频对目标自旋的操控, 决定了最终的关联信号

    Figure 6.  Correlation protocol for zero-field paramagnetic resonance measurements. The correlation signal depends on the manipulations on the target spin, which is denoted by the black dashed box.

    图 7  单个P1中心的高分辨顺磁共振谱[27] (a)两种跃迁的Ramsey实验的关联谱信号; (b)对图(a)中时域信号的傅里叶变换

    Figure 7.  High-resolution electron paramagnetic resonance spectroscopy of single P1 centers[27]: (a) Correlation signals of Ramsey experiments for the two kinds of transitions; (b) Fourier transformations of the time-domain data in panel (a).

    图 8  上方是相位调制微波的波形示意图. 下面是NV自旋态在不同表象下的能级结构. 蓝色虚线表示电场作用产生的能量偏移

    Figure 8.  Top is a schematic of the waveform of the phase-modulated microwave. Below is the energy structures of the NV center in the different frames by continuous phase-modulated microwave driving. The blue dashed line indicates the energy shift resulting from the electric field effect

    图 9  (a)频率偏移量随着亥姆霍兹线圈电流和电极电压的变化[28]; (b)不同电介质覆盖下, NV缀饰态的Ramsey振荡衰减[28]; (c)图(b)中曲线的拟合的衰减速率, 黑色实线表示(12)式的拟合曲线, 橙色虚线示意反比的关系[28]

    Figure 9.  (a) Variation of frequency shift with Helmholtz coil current and electrode voltage[28]. (b) Decay of Ramsey oscillations in the NV dressed states with different dielectric coverings[28]. (c) Decay rate of the fitted curve in panel (b). The solid black line indicates the fitted curve of Eq. (12), and the dashed orange line shows the inverse relationship[28]

  • [1]

    Mino L, Borfecchia E, Segura-Ruiz J, Giannini C, Martinez-Criado G, Lamberti C 2018 Rev. Mod. Phys. 90 025007Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Methods Primers 1 36

    [3]

    Xu K, Babcock H P, Zhuang X 2012 Nat. Methods 9 185Google Scholar

    [4]

    Göttfert F, Wurm C A, Mueller V, Berning S, Cordes V C, Honigmann A, Hell S W 2013 Biophys. J. 105 L01Google Scholar

    [5]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C 2013 Phys. Rep. 528 1Google Scholar

    [6]

    Dutt M G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A, Hemmer P, Lukin M 2007 Science 316 1312Google Scholar

    [7]

    Waldherr G, Wang Y, Zaiser S, et al. 2014 Nature 506 204Google Scholar

    [8]

    Ruf M, Wan N H, Choi H, Englund D, Hanson R 2021 J. Appl. Phys. 130 070901Google Scholar

    [9]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [10]

    Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M, Walsworth R L 2020 Rev. Mod. Phys. 92 015004Google Scholar

    [11]

    Mitchell M W, Alvarez S P 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [12]

    Balasubramanian G, Chan I, Kolesov R, et al. 2008 Nature 455 648Google Scholar

    [13]

    Maze J R, Stanwix P L, Hodges J S, et al. 2008 Nature 455 644Google Scholar

    [14]

    Shi F, Zhang Q, Wang P, et al. 2015 Science 347 1135Google Scholar

    [15]

    Lovchinsky I, Sushkov A, Urbach E, et al. 2016 Science 351 836Google Scholar

    [16]

    Dolde F, Fedder H, Doherty M W, et al. 2011 Nat. Phys. 7 459Google Scholar

    [17]

    Barson M S, Peddibhotla P, Ovartchaiyapong P, et al. 2017 Nano Lett. 17 1496Google Scholar

    [18]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [19]

    Dolde F, Doherty M W, Michl J, et al. 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [20]

    Barry J F, Turner M J, Schloss J M, Glenn D R, Song Y, Lukin M D, Park H, Walsworth R L 2016 Proc. Natl. Acad. Sci. 113 14133Google Scholar

    [21]

    Choi J, Zhou H, Landig R, et al. 2020 Proc. Natl. Acad. Sci. 117 14636Google Scholar

    [22]

    Fujiwara M, Sun S, Dohms A, et al. 2020 Sci. Adv. 6 eaba9636Google Scholar

    [23]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [24]

    Shi F, Kong F, Zhao P, et al. 2018 Nat. Methods 15 697Google Scholar

    [25]

    Zheng H, Xu J, Iwata G Z, et al. 2019 Phys. Rev. Appl. 11 064068Google Scholar

    [26]

    Kong F, Zhao P, Ye X, Wang Z, Qin Z, Yu P, Su J, Shi F, Du J 2018 Nat. Commun. 9 1563

    [27]

    Kong F, Zhao P, Yu P, Qin Z, Huang Z, Wang Z, Wang M, Shi F, Du J 2020 Sci. Adv. 6 eaaz8244Google Scholar

    [28]

    Li R, Kong F, Zhao P, et al. 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [29]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C 2011 New J. Phys. 13 025019Google Scholar

    [30]

    Gali A, Simon T, Lowther J 2011 New J. Phys. 13 025016Google Scholar

    [31]

    Batalov A, Zierl C, Gaebel T, Neumann P, Chan I Y, Balasubramanian G, Hemmer P, Jelezko F, Wrachtrup J 2008 Phys. Rev. Lett. 100 077401Google Scholar

    [32]

    Manson N, Harrison J, Sellars M 2006 Phys. Rev. B 74 104303Google Scholar

    [33]

    Van Oort E, Glasbeek M 1990 Chem. Phys. Lett. 168 529Google Scholar

    [34]

    Mittiga T, Hsieh S, Zu C, et al. 2018 Phys. Rev. Lett. 121 246402Google Scholar

    [35]

    Broadway D A, Johnson B, Barson M, et al. 2019 Nano Lett. 19 4543Google Scholar

    [36]

    Hsieh S, Bhattacharyya P, Zu C, et al. 2019 Science 366 1349Google Scholar

    [37]

    Toyli D M, Charles F, Christle D J, Dobrovitski V V, Awschalom D D 2013 Proc. Natl. Acad. Sci. 110 8417Google Scholar

    [38]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [39]

    Clore G M, Gronenborn A M 1991 Science 252 1390Google Scholar

    [40]

    Borbat P, Costa-Filho A, Earle K, Moscicki J, Freed J 2001 Science 291 266Google Scholar

    [41]

    Sarkar R, Ahuja P, Vasos P R, Bodenhausen G 2010 Phys. Rev. Lett. 104 053001Google Scholar

    [42]

    Harty T, Allcock D, Ballance C J, Guidoni L, Janacek H, Linke N, Stacey D, Lucas D 2014 Phys. Rev. Lett. 113 220501Google Scholar

    [43]

    Wolfowicz G, Tyryshkin A M, George R E, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L, Lyon S A, Morton J J 2013 Nat. Nanotechnol. 8 561Google Scholar

    [44]

    Emondts M, Ledbetter M P, Pustelny S, Theis T, Patton B, Blanchard J W, Butler M C, Budker D, Pines A 2014 Phys. Rev. Lett. 112 077601Google Scholar

    [45]

    McConnell H, Thompson D, Fessenden R W 1959 Proc. Natl. Acad. Sci. U.S.A. 45 1600Google Scholar

    [46]

    Cole T, Kushida T, Heller H C 1963 J. Chem. Phys. 38 2915Google Scholar

    [47]

    Erickson L E 1966 Phys. Rev. 143 295Google Scholar

    [48]

    Neumann P, Kolesov R, Naydenov B, et al. 2010 Nat. Phys. 6 249Google Scholar

    [49]

    Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P, Walsworth R L 2013 Phys. Rev. Lett. 110 157601Google Scholar

    [50]

    Hartmann S, Hahn E 1962 Phys. Rev. 128 2042Google Scholar

    [51]

    Tamarat P, Gaebel T, Rabeau J, et al. 2006 Phys. Rev. Lett. 97 083002Google Scholar

    [52]

    Acosta V, Santori C, Faraon A, et al. 2012 Phys. Rev. Lett. 108 206401Google Scholar

    [53]

    Bian K, Zheng W, Zeng X, Chen X, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457

    [54]

    Xu X, Wang Z, Duan C, et al. 2012 Phys. Rev. Lett. 109 070502Google Scholar

    [55]

    Broadway D A, Dontschuk N, Tsai A, et al. 2018 Nat. Electron. 1 502Google Scholar

    [56]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [57]

    Gross I, Akhtar W, Garcia V, et al. 2017 Nature 549 252Google Scholar

    [58]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [59]

    Oberg L M, de Vries M O, Hanlon L, Strazdins K, Barson M S, Doherty M, Wrachtrup J 2020 Phys. Rev. Appl. 14 014085Google Scholar

    [60]

    Ofori-Okai B, Pezzagna S, Chang K, Loretz M, Schirhagl R, Tao Y, Moores B, Groot-Berning K, Meijer J, Degen C 2012 Phys. Rev. B 86 081406Google Scholar

    [61]

    Sangtawesin S, Dwyer B L, Srinivasan S, et al. 2019 Phys. Rev. X 9 031052

  • [1] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun. High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology. Acta Physica Sinica, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [3] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] Yang Zhi-Ping, Kong Xi, Shi Fa-Zhan, Du Jiang-Feng. Phase transition observation of nanoscale water on diamond surface. Acta Physica Sinica, 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [5] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [6] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [7] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [8] Yang Yu-Jing, Ye Rui, Zhao Han-Qing, Wan Ling, Lin Ting-Ting. A modeling and inversion method of spin echoes to measure magnetic resonance sounding transverse relaxation time in surface applications. Acta Physica Sinica, 2021, 70(6): 063301. doi: 10.7498/aps.70.20201427
    [9] Phase Transition Observation of Nanoscale Water on Diamond Surface. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211348
    [10] Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min. Atomic spin and phonon coupling mechanism of nitrogen-vacancy center. Acta Physica Sinica, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [11] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [12] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [13] Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run. Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator. Acta Physica Sinica, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [14] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [15] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [17] Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing. Measurement of weak static magnetic field with nitrogen-vacancy color center. Acta Physica Sinica, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [18] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [19] Zhang Cun-Xi, Wang Rui, Kong Ling-Min. Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling. Acta Physica Sinica, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [20] HAN SHI-YING. DETERMINATION OF PRINCIPAL AXES OF ZERO-FIELD SPLITTING TENSOR BY SINGLE CRYSTAL EPR STUDY. Acta Physica Sinica, 1989, 38(2): 317-322. doi: 10.7498/aps.38.317
Metrics
  • Abstract views:  5314
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2021
  • Accepted Date:  06 September 2021
  • Available Online:  11 September 2021
  • Published Online:  05 November 2021

/

返回文章
返回