Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation

He Jian Jia Yan-Wei Tu Ju-Ping Xia Tian Zhu Xiao-Hua Huang Ke An Kang Liu Jin-Long Chen Liang-Xian Wei Jun-Jun Li Cheng-Ming

Citation:

Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation

He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming
PDF
HTML
Get Citation
  • The shallow nitrogen-vacancy center of diamond exhibits excellent sensitivity and resolution in the magnetic detection and quantum sensing areas. Compared with other methods, low-energy carbon ion implantation does not need high-purity diamond nor introduce new impurity atoms, but the formation mechanism of nitrogen-vacancy center is not clear. In this work, shallow nitrogen-vacancy centers are created in the diamond by low energy carbon ion implantation and vacuum annealing, and the transformation mechanism of nitrogen-vacancy centers in diamond is studied by Raman spectroscopy, X-ray photoelectron spectroscopy, and positron annihilation analysis. The results show that shallow nitrogen-vacancy centers can be obtained by carbon ion implantation combined with vacuum annealing. After implantation, superficial layer of diamond shows the damage zone including lattice distortion and amorphous carbon, and carbon-vacancy cluster defects (carbon atoms are surrounded by vacancy clusters) are generated. In the vacuum annealing process, the damaged area gradually transforms into the diamond structure through the recovery of the distortion area and the solid-phase epitaxy of the amorphous carbon area, accompanied by the continuous dissociation of carbon-vacancy cluster defects. When samples are annealed at 850 and 900 ℃, the structure of the damaged area is partially repaired. While annealing at 950 ℃, not only the damaged layer is basically recovered, but also nitrogen atoms capture the single vacancy obtained by the dissociation of carbon vacancy clusters, forming the nitrogen-vacancy centers.
      Corresponding author: Liu Jin-Long, liujinlong@ustb.edu.cn ; Li Cheng-Ming, chengmli@mater.ustb.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2019YFE03100200), the Natural Science Foundation of Beijing, China (Grant No. 4192038), and the State Key Laboratory of Particle Detection and Electronics Program of China (Grant No. SKLPDE-KF-202202).
    [1]

    Solyom A, Flansberry Z, Tschudin M A, Leitao N, Pioro-Ladrière M, Sankey J C, Childress L I 2018 Nano Lett. 18 6494Google Scholar

    [2]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [3]

    Feng F, Zhang W, Zhang J, Lou L, Zhu W, Wang G 2019 Eur. Phys. J. 73 202Google Scholar

    [4]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [5]

    Chen M, Meng C, Zhang Q, Duan C, Shi F, Du J 2018 Natl. Sci. Rev. 5 346Google Scholar

    [6]

    Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J 2017 Science 356 832Google Scholar

    [7]

    Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M 2020 Nanoscale 12 8847Google Scholar

    [8]

    Ninio Y, Waiskopf N, Meirzada I, Romach Y, Haim G, Yochelis S, Banin U, Bar-Gill N 2021 ACS Photonics 8 1917Google Scholar

    [9]

    Perona Martínez F, Nusantara A C, Chipaux M, Padamati S K, Schirhagl R 2020 ACS Sensors 5 3862Google Scholar

    [10]

    Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q, Fang J C 2017 J. Phys. D: Appl. Phys. 50 505104Google Scholar

    [11]

    Watanabe A, Nishikawa T, Kato H, Fujie M, Fujiwara M, Makino T, Yamasaki S, Herbschleb E D, Mizuochi N 2021 Carbon 30 294Google Scholar

    [12]

    Ishiwata H, Nakajima M, Tahara K, Ozawa H, Iwasaki T, Hatano M 2017 Appl. Phys. Lett. 24 043103Google Scholar

    [13]

    Momenzadeh S A, Stohr R J, De Oliveira F F, Brunner A, Denisenko A, Yang S, Reinhard F, Wrachtrup J 2015 Nano Lett. 15 165Google Scholar

    [14]

    Bourgeois E, Londero E, Buczak K, Hruby J, Gulka M, Balasubramaniam Y, Wachter G, Stursa J, Dobes K, Aumayr F, Trupke M 2017 Phys. Rev. B 95 041402Google Scholar

    [15]

    Monticone D G, Quercioli F, Mercatelli R, Soria S, Borini S, Poli T, Vannoni M, Vittone E, Olivero P 2013 Phys. Rev. B 88 155201Google Scholar

    [16]

    Waldermann F C, Olivero P, Nunn J, Surmacz K, Wang Z Y, Jaksch D, Taylor R A, Walmsley I A, Draganski M, Reichart P, Greentree A D 2007 Diamond Relat. Mater. 16 1887Google Scholar

    [17]

    Sumikura H, Hirama K, Nishiguchi K, Shinya A, Notomi M 2020 APL Mater. 8 031113Google Scholar

    [18]

    Van Dam S B, Walsh M, Degen M J, Bersin E, Mouradian S L, Galiullin A, Ruf M, IJspeert M, Taminiau T H, Hanson R, Englund D R 2019 Phys. Rev. B 99 161203Google Scholar

    [19]

    Orwa J O, Santori C, Fu K M, Gibson B, Simpson D, Aharonovich I, Stacey A, Cimmino A, Balog P, Markham M, Twitchen D 2011 J. Appl. Phys. 109 083530Google Scholar

    [20]

    Popov V P, Podlesny S N, Kartashov I A, Kupriyanov I N, Palyanov Y N 2021 Diamond Relat. Mater. 120 108675Google Scholar

    [21]

    Ohno K, Joseph Heremans F, de las Casas C F, Myers B A, Alemán B J, Bleszynski Jayich A C, Awschalom D D 2014 Appl. Phys. Lett. 105 052406Google Scholar

    [22]

    Healey A J, Stacey A, Johnson B C, Broadway D A, Teraji T, Simpson D A, Tetienne J P, Hollenberg L C 2020 Phys. Rev. Mater. 4 104605Google Scholar

    [23]

    Woods, G S, Van Wyk J A, Collins A T 1990 Philos. Mag. 62 589

    [24]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond Abrasives Eng. 40 42Google Scholar

    [25]

    张礼红, 成斌, 张杰, 张丽娟, 郭卫峰, 刘建党, 张礼楠, 叶邦角 2021 中国科学: 物理学 力学 天文学 42 1217Google Scholar

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2021 Sci. Chin. Sin. :Phys. , Mech. Astron. 42 1217Google Scholar

    [26]

    张鹏, 秦秀波, 于润升, 李玉晓, 曹兴忠, 王宝义 2012 郑州大学学报 44 5Google Scholar

    Zhang P, Qin X B, Yu R S, Li Y X, Cao X Z, Wang B Y 2012 J. Zhengzhou Univ. 44 5Google Scholar

    [27]

    郑贤利, 张泊丽, 刘敏, 夏艳芳, 赵修良, 赵越, 宁晓波 2016 材料导报 30 184

    Zheng X L, Zhang B L, Liu M, Xia Y F, Zhao X L, Zhao Y, Ning X B 2016 Mater. Rep. 30 184

    [28]

    Crocombette J P, Van Wambeke C 2019 EPJ Nucl. Sci. Technol. 5 9Google Scholar

    [29]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomich A V 2019 J. Appl. Spectrosc. 86 597Google Scholar

    [30]

    Uedono A, Ujihira Y, Ikari A, Haga H, Yoda O 1993 Hyperfine Interacts. 79 615Google Scholar

    [31]

    Uedono A, Wei L, Tanigawa S, Suzuki R, Ohgaki H, Mikado T, Kametani H, Akiyama H, Yamaguchi Y, Koumaru M 1993 Jpn. J. Appl. Phys. 32 3682Google Scholar

    [32]

    Uedono A, Kitano T, Watanabe M, Moriya T, Komuro N, Kawano T, Tanigawa S, Suzuki R, Ohdaira T, Mikado T 1997 Jpn. J. Appl. Phys. 36 969Google Scholar

    [33]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [34]

    Uedono A, Mori K, Morishita N, Itoh H, Tanigawa S, Fujii S, Shikata S 1999 J. Phys. Condens. Matter 11 4925Google Scholar

    [35]

    Guagliardo P, Byrne K, Chapman J, Sudarshan K, Samarin S, Williams J 2013 Diamond Relat. Mater. 37 37Google Scholar

    [36]

    王凯悦, 郭睿昂, 王宏兴 2020 物理学报 69 127802Google Scholar

    Wang K Y, Guo R A, Wang H X 2020 Acta Phys. Sin. 69 127802Google Scholar

    [37]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [38]

    田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红 2021 金属学报 57 121Google Scholar

    Tian X F, Liu X, Gong M, Zhang P Y, Wang K, Deng A H 2021 Acta Metall. Sin. 57 121Google Scholar

    [39]

    Selim F A 2021 Mater Charact. 174 110952Google Scholar

    [40]

    Siemek K, Dryzek J, Mitura-Nowak M, Lomygin A, Schabikowski M 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 465 73Google Scholar

    [41]

    Agulló-Rueda F, Gordillo N, Ynsa M D, Maira A, Cañas J, Ramos M A 2017 Carbon 123 334Google Scholar

  • 图 1  碳离子注入金刚石的深度及损伤的SRIM模拟

    Figure 1.  SRIM simulation of depth and damage of carbon ion implantation in diamond.

    图 2  金刚石在碳离子注入前后的拉曼光谱及 PL 光谱 (a) 原始金刚石拉曼光谱; (b) 原始金刚石的PL光谱; (c) 碳离子注入后金刚石的拉曼光谱; (d) 碳离子注入后金刚石的PL光谱

    Figure 2.  Raman spectra and PL spectra of the sample before and after implantation: (a) Raman spectrum of original sample; (b) PL spectrum of original sample; (c) Raman spectra of sample after implantation; (d) PL spectrum of sample after implantation.

    图 3  (a) 不同温度退火后金刚石表面的拉曼光谱; (b) 不同温度退火后金刚石表面的PL光谱

    Figure 3.  (a) Raman spectra of diamond surfaces after annealing at different temperatures; (b) PL spectra of diamond surfaces after annealing at different temperatures.

    图 4  离子注入后金刚石的XPS图谱及其退火后的XPS图谱 (a) 注入金刚石的XPS谱; (b) S1 (850 ℃)退火金刚石的XPS谱; (c) S2 (900 ℃)金刚石的XPS谱; (d) S3 (950 ℃)金刚石的XPS谱

    Figure 4.  XPS spectra of samples after ion implantation and its XPS spectra after annealing: (a) XPS spectra of implanted sample; (b) XPS spectra of the sample annealed at 850 ℃; (c) XPS spectra of the sample annealed at 900 ℃; (d) XPS spectra of the sample annealed at 950 ℃.

    图 5  金刚石碳离子注入及退火后多普勒展宽谱 (a) 金刚石碳离子注入及退火后S-E分布曲线; (b) 金刚石碳离子注入及退火后W-E分布曲线

    Figure 5.  Doppler broadening spectra after diamond carbon ion implantation and annealing: (a) S-E curves after carbon ion implantation and annealing; (b) W-E curves after carbon ion implantation and annealing.

    图 6  金刚石碳离子注入及退火后W-S参数变化

    Figure 6.  Changes of W-S parameters after diamond carbon ion implantation and annealing.

    表 1  XPS谱的拟合结果

    Table 1.  Fitting results of XPS spectra.

    Samples
    C-ionsS1(850 ℃)S2(900 ℃)S3(950 ℃)
    μ(sp2)91.5%53.5%25.3%13.6%
    μ(sp3)8.5%46.5%74.7%86.4%
    DownLoad: CSV
  • [1]

    Solyom A, Flansberry Z, Tschudin M A, Leitao N, Pioro-Ladrière M, Sankey J C, Childress L I 2018 Nano Lett. 18 6494Google Scholar

    [2]

    Casola F, Van Der Sar T, Yacoby A 2018 Nat. Rev. Mater. 3 17088Google Scholar

    [3]

    Feng F, Zhang W, Zhang J, Lou L, Zhu W, Wang G 2019 Eur. Phys. J. 73 202Google Scholar

    [4]

    Kim D, Ibrahim M I, Foy C, Trusheim M E, Han R, Englund D R 2019 Nat. Electron. 2 284Google Scholar

    [5]

    Chen M, Meng C, Zhang Q, Duan C, Shi F, Du J 2018 Natl. Sci. Rev. 5 346Google Scholar

    [6]

    Schmitt S, Gefen T, Stürner F M, Unden T, Wolff G, Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J 2017 Science 356 832Google Scholar

    [7]

    Barbiero M, Castelletto S, Zhang Q, Chen Y, Charnley M, Russell S, Gu M 2020 Nanoscale 12 8847Google Scholar

    [8]

    Ninio Y, Waiskopf N, Meirzada I, Romach Y, Haim G, Yochelis S, Banin U, Bar-Gill N 2021 ACS Photonics 8 1917Google Scholar

    [9]

    Perona Martínez F, Nusantara A C, Chipaux M, Padamati S K, Schirhagl R 2020 ACS Sensors 5 3862Google Scholar

    [10]

    Zhang C, Yuan H, Zhang N, Xu L X, Li B, Cheng G D, Wang Y, Gui Q, Fang J C 2017 J. Phys. D: Appl. Phys. 50 505104Google Scholar

    [11]

    Watanabe A, Nishikawa T, Kato H, Fujie M, Fujiwara M, Makino T, Yamasaki S, Herbschleb E D, Mizuochi N 2021 Carbon 30 294Google Scholar

    [12]

    Ishiwata H, Nakajima M, Tahara K, Ozawa H, Iwasaki T, Hatano M 2017 Appl. Phys. Lett. 24 043103Google Scholar

    [13]

    Momenzadeh S A, Stohr R J, De Oliveira F F, Brunner A, Denisenko A, Yang S, Reinhard F, Wrachtrup J 2015 Nano Lett. 15 165Google Scholar

    [14]

    Bourgeois E, Londero E, Buczak K, Hruby J, Gulka M, Balasubramaniam Y, Wachter G, Stursa J, Dobes K, Aumayr F, Trupke M 2017 Phys. Rev. B 95 041402Google Scholar

    [15]

    Monticone D G, Quercioli F, Mercatelli R, Soria S, Borini S, Poli T, Vannoni M, Vittone E, Olivero P 2013 Phys. Rev. B 88 155201Google Scholar

    [16]

    Waldermann F C, Olivero P, Nunn J, Surmacz K, Wang Z Y, Jaksch D, Taylor R A, Walmsley I A, Draganski M, Reichart P, Greentree A D 2007 Diamond Relat. Mater. 16 1887Google Scholar

    [17]

    Sumikura H, Hirama K, Nishiguchi K, Shinya A, Notomi M 2020 APL Mater. 8 031113Google Scholar

    [18]

    Van Dam S B, Walsh M, Degen M J, Bersin E, Mouradian S L, Galiullin A, Ruf M, IJspeert M, Taminiau T H, Hanson R, Englund D R 2019 Phys. Rev. B 99 161203Google Scholar

    [19]

    Orwa J O, Santori C, Fu K M, Gibson B, Simpson D, Aharonovich I, Stacey A, Cimmino A, Balog P, Markham M, Twitchen D 2011 J. Appl. Phys. 109 083530Google Scholar

    [20]

    Popov V P, Podlesny S N, Kartashov I A, Kupriyanov I N, Palyanov Y N 2021 Diamond Relat. Mater. 120 108675Google Scholar

    [21]

    Ohno K, Joseph Heremans F, de las Casas C F, Myers B A, Alemán B J, Bleszynski Jayich A C, Awschalom D D 2014 Appl. Phys. Lett. 105 052406Google Scholar

    [22]

    Healey A J, Stacey A, Johnson B C, Broadway D A, Teraji T, Simpson D A, Tetienne J P, Hollenberg L C 2020 Phys. Rev. Mater. 4 104605Google Scholar

    [23]

    Woods, G S, Van Wyk J A, Collins A T 1990 Philos. Mag. 62 589

    [24]

    吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond Abrasives Eng. 40 42Google Scholar

    [25]

    张礼红, 成斌, 张杰, 张丽娟, 郭卫峰, 刘建党, 张礼楠, 叶邦角 2021 中国科学: 物理学 力学 天文学 42 1217Google Scholar

    Zhang L H, Cheng B, Zhang J, Zhang L J, Guo W F, Liu J D, Zhang L N, Ye B J 2021 Sci. Chin. Sin. :Phys. , Mech. Astron. 42 1217Google Scholar

    [26]

    张鹏, 秦秀波, 于润升, 李玉晓, 曹兴忠, 王宝义 2012 郑州大学学报 44 5Google Scholar

    Zhang P, Qin X B, Yu R S, Li Y X, Cao X Z, Wang B Y 2012 J. Zhengzhou Univ. 44 5Google Scholar

    [27]

    郑贤利, 张泊丽, 刘敏, 夏艳芳, 赵修良, 赵越, 宁晓波 2016 材料导报 30 184

    Zheng X L, Zhang B L, Liu M, Xia Y F, Zhao X L, Zhao Y, Ning X B 2016 Mater. Rep. 30 184

    [28]

    Crocombette J P, Van Wambeke C 2019 EPJ Nucl. Sci. Technol. 5 9Google Scholar

    [29]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomich A V 2019 J. Appl. Spectrosc. 86 597Google Scholar

    [30]

    Uedono A, Ujihira Y, Ikari A, Haga H, Yoda O 1993 Hyperfine Interacts. 79 615Google Scholar

    [31]

    Uedono A, Wei L, Tanigawa S, Suzuki R, Ohgaki H, Mikado T, Kametani H, Akiyama H, Yamaguchi Y, Koumaru M 1993 Jpn. J. Appl. Phys. 32 3682Google Scholar

    [32]

    Uedono A, Kitano T, Watanabe M, Moriya T, Komuro N, Kawano T, Tanigawa S, Suzuki R, Ohdaira T, Mikado T 1997 Jpn. J. Appl. Phys. 36 969Google Scholar

    [33]

    王锐, 胡晓君 2014 物理学报 63 148102Google Scholar

    Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102Google Scholar

    [34]

    Uedono A, Mori K, Morishita N, Itoh H, Tanigawa S, Fujii S, Shikata S 1999 J. Phys. Condens. Matter 11 4925Google Scholar

    [35]

    Guagliardo P, Byrne K, Chapman J, Sudarshan K, Samarin S, Williams J 2013 Diamond Relat. Mater. 37 37Google Scholar

    [36]

    王凯悦, 郭睿昂, 王宏兴 2020 物理学报 69 127802Google Scholar

    Wang K Y, Guo R A, Wang H X 2020 Acta Phys. Sin. 69 127802Google Scholar

    [37]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [38]

    田雪芬, 刘翔, 龚敏, 张培源, 王康, 邓爱红 2021 金属学报 57 121Google Scholar

    Tian X F, Liu X, Gong M, Zhang P Y, Wang K, Deng A H 2021 Acta Metall. Sin. 57 121Google Scholar

    [39]

    Selim F A 2021 Mater Charact. 174 110952Google Scholar

    [40]

    Siemek K, Dryzek J, Mitura-Nowak M, Lomygin A, Schabikowski M 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 465 73Google Scholar

    [41]

    Agulló-Rueda F, Gordillo N, Ynsa M D, Maira A, Cañas J, Ramos M A 2017 Carbon 123 334Google Scholar

  • [1] Zhao Yong-Sheng, Yan Feng-Yun, Liu Xue. Calculation of positron annihilation lifetime in diamond doped with B, Cr, Mo, Ti, W, Zr. Acta Physica Sinica, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [2] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [3] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei. Coherent electrical control of single electron spin in diamond nitrogen-vacancy center. Acta Physica Sinica, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [6] Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun. Optimization of optical control of nitrogen vacancy centers in solid diamond. Acta Physica Sinica, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [7] Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Physica Sinica, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [8] Song Qing, Quan Wei-Long, Feng Tian-Jun, E Yan. Collision reactions of CH radical on diamond and their effects on the carbon film growth. Acta Physica Sinica, 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [9] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [10] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [12] Tian Yu-Ming, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Chai Yue-Sheng, Zeng Yu-Shun, Wang Qiang. Effect of high-energy electron exposure on the charge states of defects in diamond. Acta Physica Sinica, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [13] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [14] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] Liu Dong-Qi, Chang Yan-Chun, Liu Gang-Qin, Pan Xin-Yu. Electron spin studies of nitrogen vacancy centers in nanodiamonds. Acta Physica Sinica, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [16] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [17] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jia Xiao-Peng, Li Gui-Ju. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis. Acta Physica Sinica, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] Liu Yan-Yan, Bauer-Grosse E., Zhang Qing-Yu. Structure and growth behavior of low N-doped diamond film by microwave plasma assisted chemical vapor deposition. Acta Physica Sinica, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [19] Li Rong-Bin. Atomic-scale study of boron-nitrogen co-doping into diamond. Acta Physica Sinica, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [20] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
Metrics
  • Abstract views:  5399
  • PDF Downloads:  148
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2022
  • Accepted Date:  09 May 2022
  • Available Online:  07 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回