-
Diamond, a wide band gap semiconductor material, has been attracting interest in several fields from electrics and optics to biomedicine and quantum computing due to its outstanding properties. These properties of diamond are related to its unique lattice and optically active defect centers. In this paper, the dependence of nitrogen-vacancy (NV) center on measurement temperature is studied by using the low-temperature photoluminescence (PL) spectroscopy in a temperature range of 80–200 K. The results show that with the increase of the measurement temperature, the zero phonon lines of NV defects are red-shifted, its intensity decreases and its full width at half maximum increases. These results are attributed to the synergetic process of the lattice expansion and quadratic electron-phonon coupling. The NV— and NV0 centers have similar values in the quenching activation energy and the thermal softening coefficient, resulting from their similar structures. The small differences may be associated with the electron-phonon coupling. The broadening mechanism of the NV centers is carefully distinguished by
$T^3,\; T^5,\; T^7$ Voigt function fitting with the relation. These results show that the full width at half maximum of the Gaussian component of NV— and NV0 centers are randomly distributed near 0.1 meV and 2.1 meV, respectively, while the full width at half maximum of the Lorentz component of NV— and NV0 centers increase with measurement temperature increasing. The full width at half maximum of Lorentz of NV— and NV0 centers conform to the$ T^3 $ relationship. It can be proved that under the action of the fluctuating field, the zero phonon lines of the NV defects exhibit an obvious homogeneous widening mechanism.-
Keywords:
- diamond /
- nitrogen /
- defect /
- photoluminescence
[1] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 物理学报 64 247802Google Scholar
Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802Google Scholar
[2] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542Google Scholar
[3] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar
[4] Davies G 1974 J. Phys. C Solid State Phys. 7 3797Google Scholar
[5] Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45Google Scholar
[6] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903Google Scholar
[7] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar
[8] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 物理学报 62 097803Google Scholar
Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803Google Scholar
[9] 王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334Google Scholar
Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334Google Scholar
[10] 耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384Google Scholar
Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384Google Scholar
[11] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar
[12] Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103Google Scholar
[13] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 物理学报 62 067802Google Scholar
Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802Google Scholar
[14] Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108Google Scholar
[15] Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397Google Scholar
[16] Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232Google Scholar
[17] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar
[18] Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348Google Scholar
[19] Varshni Y P 1967 Physica 34 149Google Scholar
[20] Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644Google Scholar
[21] Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005Google Scholar
[22] Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908Google Scholar
[23] Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597Google Scholar
[24] Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458
[25] Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901Google Scholar
[26] Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029Google Scholar
[27] Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1Google Scholar
[28] Reshchikova M A 2014 J. Appl. Phys. 115 012010Google Scholar
[29] Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404Google Scholar
[30] Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351Google Scholar
-
表 1 金刚石合成参数(1 sccm = 1 mL/min, 1 Torr
$ \approx $ 133.322 Pa)Table 1. Synthetic parameters of diamond.
参数 H2流量/sccm CH4/H2体积分数/% 微波功率/W 压强/Torr 温度/℃ 数值 300 5 3100 90 1060 -
[1] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 物理学报 64 247802Google Scholar
Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802Google Scholar
[2] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542Google Scholar
[3] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar
[4] Davies G 1974 J. Phys. C Solid State Phys. 7 3797Google Scholar
[5] Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45Google Scholar
[6] Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903Google Scholar
[7] Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar
[8] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 物理学报 62 097803Google Scholar
Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803Google Scholar
[9] 王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334Google Scholar
Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334Google Scholar
[10] 耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384Google Scholar
Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384Google Scholar
[11] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar
[12] Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103Google Scholar
[13] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 物理学报 62 067802Google Scholar
Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802Google Scholar
[14] Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108Google Scholar
[15] Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397Google Scholar
[16] Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232Google Scholar
[17] Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar
[18] Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348Google Scholar
[19] Varshni Y P 1967 Physica 34 149Google Scholar
[20] Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644Google Scholar
[21] Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005Google Scholar
[22] Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908Google Scholar
[23] Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597Google Scholar
[24] Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458
[25] Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901Google Scholar
[26] Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029Google Scholar
[27] Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1Google Scholar
[28] Reshchikova M A 2014 J. Appl. Phys. 115 012010Google Scholar
[29] Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404Google Scholar
[30] Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351Google Scholar
Catalog
Metrics
- Abstract views: 9234
- PDF Downloads: 195
- Cited By: 0