Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband modulation of terahertz wave polarization states with flexible metamaterial

Chen Le-Di Fan Ren-Hao Liu Yu Tang Gong-Hui Ma Zhong-Li Peng Ru-Wen Wang Mu

Citation:

Broadband modulation of terahertz wave polarization states with flexible metamaterial

Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu
PDF
HTML
Get Citation
  • In this work, we study the broadband manipulation of polarization states of terahertz (THz) waves with flexible metamaterial both theoretically and experimentally. Firstly, we construct a chiral THz metamaterial with asymmetric L-shaped metal-dielectric-metal structure, generating a series of electric dipoles via its interacting with terahertz waves. By changing the geometric parameters of the structure, the time responses of the electric dipoles in the two orthogonal directions are effectively modulated. Consequently, the chiral metamaterial efficiently converts linearly polarized terahertz wave into a circularly polarized one. The radiation of the metamaterial remains almost unaffected by the changing of the incident angle, which indicates that this chiral metamaterial can be used to realize a flexible terahertz circularly-polarized wave plate. Further, we present the working principle of this flexible terahertz circularly-polarized wave plate at the bending state based on the equivalent circuit model. Moreover, we fabricate a flexible metamaterial wave plate by using polymers as the dielectric layer. When the linearly polarized light is incident on the metamaterial, the circularly polarized output can be achieved in a wide frequency range of 0.46–0.62 THz. The polarization conversion remains quite stable even if the sample is bent. This flexible terahertz metamaterial wave plate is expected to be applied to 6G communication, molecular detection, etc.
      Corresponding author: Fan Ren-Hao, rhfan@nju.edu.cn ; Peng Ru-Wen, rwpeng@nju.edu.cn ; Wang Mu, muwang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975078, 11974177) and the National Key R&D Program of China (Grant No. 2017YFA0303702).
    [1]

    Yang P, Xiao Y, Xiao M, Li S 2019 IEEE Network 33 70

    [2]

    Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M 2020 IEEE Commun. Mag. 58 55Google Scholar

    [3]

    Chowdhury M Z, Shahjalal M, Ahmed S, Jang Y M 2020 IEEE Open J. Commun. Soc. 1 957Google Scholar

    [4]

    Akyildiz I F, Kak A, Nie S 2020 IEEE Access 8 133995Google Scholar

    [5]

    Imoize A L, Adedeji O, Tandiya N, Shetty S 2021 Sensors 21 1709Google Scholar

    [6]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [7]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [8]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [9]

    Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [10]

    Yang F, Pitchappa P, Wang N 2022 Micromachines 13 285Google Scholar

    [11]

    Martinez-Lopez L, Rodriguez-Cuevas J, Martinez-Lopez J I, Martynyuk A E 2014 IEEE Antennas Wirel. Propag. Lett. 13 153Google Scholar

    [12]

    Hossain T M, Mirza H, Soh P J, Jamlos M F, Sheikh R A, Al-Hadi A A, Akkaraekthalin P 2019 IEEE Access 7 149262Google Scholar

    [13]

    Lokman A H, Soh P J, Azemi S N, et al. 2017 Int. J. Antennas Propag. 2017 4940656

    [14]

    Paracha K N, Rahim S K A, Soh P J, Khalily M 2019 IEEE Access 7 56694Google Scholar

    [15]

    Li J, Zhang L, Zhang M, Su H, Li I L, Ruan S, Liang H 2020 Adv. Opt. Mater. 8 2000068Google Scholar

    [16]

    Sayem A S M, Simorangkir R B V B, Esselle K P, Lalbakhsh A, Gawade D R, O'Flynn B, Buckley J L 2022 Sensors 22 1276Google Scholar

    [17]

    Wen D D, Yue F Y, Liu W W, Chen S Q, Chen X Z 2018 Adv. Opt. Mater. 6 1800348Google Scholar

    [18]

    Niu X X, Hu X Y, Chu S S, Gong Q H 2018 Adv. Opt. Mater. 6 1701292Google Scholar

    [19]

    Che Y H, Wang X T, Song Q H, Zhu Y B, Xiao S M 2020 Nanophotonics 9 4407Google Scholar

    [20]

    Fan R H, Xiong B, Peng R W, Wang M 2020 Adv. Mater. 32 1904646

    [21]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [22]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [23]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [24]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701Google Scholar

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701Google Scholar

    [25]

    Cheng Y, Zhu X, Li J, Chen F, Luo H, Wu L 2021 Physica E 134 114893Google Scholar

    [26]

    Li S X, Yang Z Y, Wang J, Zhao M 2011 J. Opt. Soc. Am. A 28 19Google Scholar

    [27]

    Yu Y, Yang Z Y, Zhao M, Lu P X 2011 J. Opt. 13 055104Google Scholar

    [28]

    Pan W, Ren X, Chen Q, Wang X 2019 Optoelectron. Lett. 15 352Google Scholar

    [29]

    Li Z, Pan J, Hu H, Zhu H 2022 Adv. Electron. Mater. 8 2100978Google Scholar

    [30]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [31]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020Google Scholar

    [32]

    Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar

    [33]

    Fu Y, Wang Y, Yang G, Qiao Q, Liu Y 2021 Opt. Express 29 13373Google Scholar

    [34]

    Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L 2014 Laser Photonics Rev. 8 626Google Scholar

    [35]

    Sonsilphong A, Gutruf P, Withayachumnankul W, Abbott D, Bhaskaran M, Sriram S, Wongkasem N 2015 J. Opt. 17 085101Google Scholar

    [36]

    Baena J D, Bonache J, Martín F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F, Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451Google Scholar

    [37]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104Google Scholar

    [38]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

  • 图 1  柔性宽带太赫兹波片示意图 (a) 未弯曲情形; (b) 单元结构; (c) 弯曲情形

    Figure 1.  Schematic diagram of flexible broadband terahertz wave plate: (a) Wave plate without bending; (b) element structure; (c) wave plate under bending.

    图 2  宽带偏振转换物理原理的计算验证 (a), (b) 入射光频率为0.55 THz时, 不同入射角下计算的结构上方0.5 μm 处Ez分量的(a)强度分布图和(b)相位分布图; (c) 计算的不同入射角度下的辐射场项$|{{\boldsymbol{E}}_{{\text{rad}}}}|$和共轭关系项$\left| - {{\text{e}}^{{\text{i}}k\tfrac{d}{{\cos \theta }}}} + {{\text{e}}^{ - {\text{i}}k\tfrac{d}{{\cos \theta }}}}\right|$随频率的变化; (d) 计算的不同入射角度下 |Ey'|/|Ex'| 随频率的变化

    Figure 2.  Theoretical verification of the physical principle of broadband polarization conversion: Calculated (a) intensity distribution maps and (b) phase distribution diagrams of Ez component at 0.5 μm above the structure at 0.55 THz with incident angles of 15°, 30°, 45°, 60°; (c) calculated radiation field term $|{{\boldsymbol{E}}_{{\text{rad}}}}|$ and the conjugate term $\left| - {{\text{e}}^{{\text{i}}k\tfrac{d}{{\cos \theta }}}} + {{\rm e} ^{ - {\text{i}}k\tfrac{d}{{\cos \theta }}}}\right|$ at different incident angles and frequencies; (d) calculated |Ey'|/|Ex'| with different incident angles and frequencies.

    图 3  弯曲情况下出射波偏振转换的稳定性 (a), (b) 计算的在不同入射角度下的(a) |Ey'|/|Ex'|和(b) φy' φx'; (c), (d) 计算的(c) |Ey'|/|Ex'|和(d) φy' φx'随入射角和频率的变化关系

    Figure 3.  Stability analysis on output polarization states of terahertz waves under bending: Calculated (a) |Ey'|/|Ex'| and (b) φy' φx' at some different incident angles; calculated (c) |Ey'|/|Ex'| and (d) φy' φx' at different incident angles and frequencies.

    图 4  L型金属结构尺寸对偏振调控的影响 (a), (b) 计算的在不同L型结构臂长l下的(a) |Ey'|/|Ex'|和(b) φy' φx'; (c), (d) 计算的在不同L型结构宽度w下的(c) |Ey'|/|Ex'|和(d) φy' φx'

    Figure 4.  Effect of L-shaped structure size on polarization control: Calculated (a) |Ey'|/|Ex'| and (b) φy' φx' with different l; calculated (c) |Ey'|/|Ex'| and (d) φy' φx' with different w.

    图 5  未弯曲时柔性太赫兹波片出射波偏振态的实验与计算结果 (a) 样品光学照片(白标尺为100 μm); (b) 太赫兹时域光谱仪测量原理图; 线偏振片透光轴相对y' 轴 (c) 45°和 (d) –45°时测得的电场时域谱; 实验测得的随频率变化的(e) |Ey'|/|Ex'|和(f) φy' φx'; 计算的随频率变化的(g) |Ey'|/|Ex'|和(h) φy' φx'

    Figure 5.  Measured and calculated polarization states of output waves of wave plate without bending: (a) Optical photograph of sample, white scale bar is 100 μm; (b) schematic diagram of terahertz time-domain spectrometer; the time-domain spectrum of electric field measured with transmission axis of linear polarizer relative to y' axis (c) 45° and (d) –45°; measured (e) |Ey'|/|Ex'| and (f) φy' φx' as a function of frequency; calculated (g) |Ey'|/|Ex'| and (h) φy' φx' as a function of frequency.

    图 6  不同弯曲程度下的太赫兹波时域谱测量结果 (a) 不同弯曲程度下拍摄的样品照片; (b) 曲率半径与相关结构参数的关系式示意图; 不同曲率半径下测量的太赫兹时域谱, 其中(c) r = 0.71 m, (d) r = 0.36 m, (e) r = 0.24 m, (f) r = 0.18 m, (g) r = 0.14 m

    Figure 6.  Measured time domain results at different bending states: (a) Photographs at different bending states; (b) schematic diagram of the relationship between the radius of curvature and relevant structural parameters; the measured time-domain spectra under different curvature radius of (c) r = 0.71 m, (d) r = 0.36 m, (e) r = 0.24 m, (f) r = 0.18 m, (g) r = 0.14 m.

    图 7  (a)—(e) 不同曲率半径下测量到的|Ey'|/|Ex'|, 其中(a) r = 0.71 m, (b) r = 0.36 m, (c) r = 0.24 m, (d) r = 0.18 m, (e) r = 0.14 m; (f) 在0.54 THz处|Ey'|/|Ex'| 随弯曲曲率半径的变化关系

    Figure 7.  Measured |Ey'|/|Ex'| under different curvature radius: (a) r = 0.71 m; (b) r = 0.36 m; (c) r = 0.24 m; (d) r = 0.18 m; (e) r = 0.14 m. (f) Relationship between |Ey'|/|Ex'| and curvature radius at 0.54 THz.

    图 8  不同曲率半径下测量到的 φy' φx', 其中(a) r = 0.71 m, (b) r = 0.36 m, (c) r = 0.24 m, (d) r = 0.18 m, (e) r = 0.14 m; (f) 在0.54 THz处 φy' φx' 随弯曲曲率半径的变化关系

    Figure 8.  Measured φy' φx' under different curvature radius: (a) r = 0.71 m; (b) r = 0.36 m; (c) r = 0.24 m; (d) r = 0.18 m; (e) r = 0.14 m. (f) Relationship between φy' φx' and curvature radius at 0.54 THz.

  • [1]

    Yang P, Xiao Y, Xiao M, Li S 2019 IEEE Network 33 70

    [2]

    Giordani M, Polese M, Mezzavilla M, Rangan S, Zorzi M 2020 IEEE Commun. Mag. 58 55Google Scholar

    [3]

    Chowdhury M Z, Shahjalal M, Ahmed S, Jang Y M 2020 IEEE Open J. Commun. Soc. 1 957Google Scholar

    [4]

    Akyildiz I F, Kak A, Nie S 2020 IEEE Access 8 133995Google Scholar

    [5]

    Imoize A L, Adedeji O, Tandiya N, Shetty S 2021 Sensors 21 1709Google Scholar

    [6]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [7]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [8]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371Google Scholar

    [9]

    Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nat. Photonics 14 446Google Scholar

    [10]

    Yang F, Pitchappa P, Wang N 2022 Micromachines 13 285Google Scholar

    [11]

    Martinez-Lopez L, Rodriguez-Cuevas J, Martinez-Lopez J I, Martynyuk A E 2014 IEEE Antennas Wirel. Propag. Lett. 13 153Google Scholar

    [12]

    Hossain T M, Mirza H, Soh P J, Jamlos M F, Sheikh R A, Al-Hadi A A, Akkaraekthalin P 2019 IEEE Access 7 149262Google Scholar

    [13]

    Lokman A H, Soh P J, Azemi S N, et al. 2017 Int. J. Antennas Propag. 2017 4940656

    [14]

    Paracha K N, Rahim S K A, Soh P J, Khalily M 2019 IEEE Access 7 56694Google Scholar

    [15]

    Li J, Zhang L, Zhang M, Su H, Li I L, Ruan S, Liang H 2020 Adv. Opt. Mater. 8 2000068Google Scholar

    [16]

    Sayem A S M, Simorangkir R B V B, Esselle K P, Lalbakhsh A, Gawade D R, O'Flynn B, Buckley J L 2022 Sensors 22 1276Google Scholar

    [17]

    Wen D D, Yue F Y, Liu W W, Chen S Q, Chen X Z 2018 Adv. Opt. Mater. 6 1800348Google Scholar

    [18]

    Niu X X, Hu X Y, Chu S S, Gong Q H 2018 Adv. Opt. Mater. 6 1701292Google Scholar

    [19]

    Che Y H, Wang X T, Song Q H, Zhu Y B, Xiao S M 2020 Nanophotonics 9 4407Google Scholar

    [20]

    Fan R H, Xiong B, Peng R W, Wang M 2020 Adv. Mater. 32 1904646

    [21]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [22]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [23]

    杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702Google Scholar

    Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702Google Scholar

    [24]

    付亚男, 张新群, 赵国忠, 李永花, 于佳怡 2017 物理学报 66 180701Google Scholar

    Fu Y N, Zhang X Q, Zhao G Z, Li Y H, Yu J Y 2017 Acta Phys. Sin. 66 180701Google Scholar

    [25]

    Cheng Y, Zhu X, Li J, Chen F, Luo H, Wu L 2021 Physica E 134 114893Google Scholar

    [26]

    Li S X, Yang Z Y, Wang J, Zhao M 2011 J. Opt. Soc. Am. A 28 19Google Scholar

    [27]

    Yu Y, Yang Z Y, Zhao M, Lu P X 2011 J. Opt. 13 055104Google Scholar

    [28]

    Pan W, Ren X, Chen Q, Wang X 2019 Optoelectron. Lett. 15 352Google Scholar

    [29]

    Li Z, Pan J, Hu H, Zhu H 2022 Adv. Electron. Mater. 8 2100978Google Scholar

    [30]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [31]

    Wang D, Zhang L, Gu Y, Mehmood M Q, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W, Hong M 2015 Sci. Rep. 5 15020Google Scholar

    [32]

    Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar

    [33]

    Fu Y, Wang Y, Yang G, Qiao Q, Liu Y 2021 Opt. Express 29 13373Google Scholar

    [34]

    Cong L Q, Xu N N, Gu J Q, Singh R, Han J G, Zhang W L 2014 Laser Photonics Rev. 8 626Google Scholar

    [35]

    Sonsilphong A, Gutruf P, Withayachumnankul W, Abbott D, Bhaskaran M, Sriram S, Wongkasem N 2015 J. Opt. 17 085101Google Scholar

    [36]

    Baena J D, Bonache J, Martín F, Sillero R M, Falcone F, Lopetegi T, Laso M A G, García-García J, Gil I, Portillo M F, Sorolla M 2005 IEEE Trans. Microwave Theory Tech. 53 1451Google Scholar

    [37]

    Jiang S C, Xiong X, Sarriugarte P, Jiang S W, Yin X B, Wang Y, Peng R W, Wu D, Hillenbrand R, Zhang X, Wang M 2013 Phys. Rev. B 88 161104Google Scholar

    [38]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

  • [1] Li Yu-Fan, Xue Wen-Qing, Li Yu-Chao, Zhan Yan-Hu, Xie Qian, Li Yan-Kai, Zha Jun-Wei. Research progress of flexible energy storage dielectric materials with sandwiched structure. Acta Physica Sinica, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] Peng Xiao-Yu, Zhou Huan. Biological effects of terahertz waves. Acta Physica Sinica, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [5] Lan Shun, Pan Hao, Lin Yuan-Hua. Fabrication and applications of flexible inorganic ferroelectric thin films. Acta Physica Sinica, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [6] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [7] Yao Yao, Shen Yue, Hao Jia-Ming, Dai Ning. Antireflection coatings based on subwavelength artificial engineering microstructures. Acta Physica Sinica, 2019, 68(14): 147802. doi: 10.7498/aps.68.20190702
    [8] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [10] Yang Peng, Han Tian-Cheng. Polarization-controlled dual-band broadband infrared absorber. Acta Physica Sinica, 2018, 67(10): 107801. doi: 10.7498/aps.67.20172716
    [11] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [12] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [13] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [14] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [15] Tian Wei, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan, Zhang Huai-Wu. Optically tuned wideband terahertz wave amplitude modulator based on gold-doped silicon. Acta Physica Sinica, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [16] Liu Hai-Wen, Zhu Shuang-Shuang, Wen Pin, Qin Feng, Ren Bao-Ping, Xiao Xiang, Hou Xin-Yu. A flexible dual-band metamaterial based on hairpin split-ring resonators. Acta Physica Sinica, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [17] Dong Jing, Chai Yu-Hua, Zhao Yue-Zhi, Shi Wei-Wei, Guo Yu-Xiu, Yi Ming-Dong, Xie Ling-Hai, Huang Wei. The progress of flexible organic field-effect transistors. Acta Physica Sinica, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [18] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [19] Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin. Extraction of effective constitutive parameters of active terahertz metamaterial with negative differential resistance carbon nanotubes. Acta Physica Sinica, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [20] Lu Jin-Xing, Huang Zhi-Ming, Huang Jing-Guo, Wang Bing-Bing, Shen Xue-Min. Analysis of the effect of phase-mismatch and material absorption on the terahertz-wave generation from GaSe. Acta Physica Sinica, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
Metrics
  • Abstract views:  5286
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2022
  • Accepted Date:  10 May 2022
  • Available Online:  08 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回