Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on fabrication and properties of high concentration diamond NV color center by MPCVD method

Liu Hou-Sheng Guo Shi-Feng Chen Ming Zhang Guo-Kai Guo Chong Gao Xue-Dong Yu Cui

Citation:

Study on fabrication and properties of high concentration diamond NV color center by MPCVD method

Liu Hou-Sheng, Guo Shi-Feng, Chen Ming, Zhang Guo-Kai, Guo Chong, Gao Xue-Dong, Yu Cui
PDF
Get Citation
  • Diamond nitrogen vacancy (NV) color centers have good stability at room temperature, long electron spin coherence time, and can be manipulated by lasers and microwaves, making them the most promising structure in the field of quantum detection. Within a certain range, the higher the concentration of NV color centers, the higher the sensitivity of detecting physical quantities. Therefore, it is necessary to dope sufficient nitrogen atoms into diamond single crystals to form high concentration of NV color centers. In this study, diamond single crystals with different nitrogen content were prepared by microwave plasma chemical vapor deposition (MPCVD) to construct high concentrations of NV color centers. By doping different amounts of nitrogen atoms into the precursor gas, many problems encountered during long-time growth of diamond single crystals under high nitrogen conditions were solved. Diamond single crystals with nitrogen contents of approximately 0.205 ppm, 5 ppm, 8 ppm, 11 ppm, 15 ppm, 36 ppm, and 54 ppm were prepared. As the nitrogen content increased, the width of the step flow on the surface of the diamond single crystal gradually widened, eventually the step flow gradually disappeared and the surface became smooth. Under the experimental conditions of this study, it was preliminarily determined that the average ratio of the nitrogen content in the precursor gas to the nitrogen atoms content introduced into the diamond single crystal lattice was about 11. Fourier transform infrared spectroscopy shows that as the nitrogen content inside the CVD diamond single crystal increases, the density of vacancy defects also increases. Therefore, the color of CVD high nitrogen diamond single crystals ranges from light brown to brownish black. Compared with HPHT diamond single crystals, the intensity of absorption peak at 1130cm-1 is weaker, absorption peak at 1280cm-1 was not shown. Three obvious nitrogen related absorption peaks at 1371cm-1, 1353cm-1, and 1332cm-1 of CVD diamond single crystal were displayed. Nitrogen atoms mainly exist in the form of aggregated nitrogen and single substitutional N+ in diamond single crystals, rather than in the form of C-defect. The PL spectra results showed that defects such as vacancies inside the diamond single crystal with nitrogen content of 54 ppm were significantly increased after electron irradiation, leading to a remarkable increase in the concentration of NV color centers. The magnetic detection performance of the NV color center material after irradiation was verified, the fluorescence intensity was uniformly distributed in the sample surface. The diamond single crystal with nitrogen content of 54 ppm had good microwave spin manipulation, its longitudinal relaxation time was about 3.37 ms.
  • [1]

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017Acta Phys. Sin. 23 90(in Chinese) [李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清, 2017物理学报23 90]

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013Phys Rep 528 1

    [3]

    Acosta V, Hemmer P 2013MRS Bull. 38 127

    [4]

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020Diamond & Abrasives Engineering 40 42(in Chinese) [吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星2020金刚石与磨料磨具工程40 42]

    [5]

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023Laser& Optoelectronics Progress 60 11(in Chinese) [刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳2023激光与光电子学进展60 11]

    [6]

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018Acta Phys. Sin. 67 43(in Chinese) [王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰2018物理学报67 43]

    [7]

    Wang Z, Kong F, Zhao P, Huang Z, Yu P, Wang Y, Shi F, Du J 2022Sci Adv 8 8158

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023Diam. Relat. Mater 139 110348

    [9]

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021Acta Phys.Sin. 70 330(in Chinese) [李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊2021物理学报70 330]

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023Diam. Relat. Mater. 140 110472

    [11]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015Acta Phys. Sin. 64 412(in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015物理学报64 412]

    [12]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984(in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安2015人工晶体学报44 2984]

    [13]

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016Acta Phys. Sin. 65 257(in Chinese) [李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安2016物理学报65 257]

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999Diam. Relat. Mater. 8 1441

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020Diam. Relat. Mater 105 107794

    [16]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000Acta Phys. Sin. 49 1756(in Chinese) [李灿华廖源, 常超,王冠中,方容川2000物理学报49 1756]

    [17]

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999J. Inor. mater. 14 114(in Chinese) [刘志杰张卫, 张剑云,万永中,王季陶1999无机材料学报14 114]

    [18]

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021J. Synthetic Cryst.50 0158(in Chinese) [李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪2021人工晶体学报 50 0158]

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023phys. status solidi (a) 220 2200299

    [20]

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009Acta Phys. Sin. 58 8039(in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊2009物理学报58 8039]

    [21]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014Acta Phys. Sin. 63 326(in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安2014物理学报63 326]

    [22]

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol Sin. 42 895(in Chinese) [吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢2021地球学报42 895]

    [23]

    Howell C, O’Neill C.J, Grant K J, Griffin W L, O’Reilly S Y. Pearson N J, Stern R A, Stachel T 2012Contrib. Mineral Petr. 164 1011

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998J. Phys. Condens. Matter 10 6171

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021Diam. Relat. Mater 118 108511

    [26]

    Jones R, 2009Diam. Relat. Mater 18 820

    [27]

    Li R B 2007Acta Phys. Sin. 56 395(in Chinese) [李荣斌2007物理学报56 395]

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019Carbon 143 714

  • [1] Li Shao-Min, Sun Li-Qun. Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.72.20221725
    [2] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, doi: 10.7498/aps.71.20220011
    [3] Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song. Theoretical studies on molecular conformers and infrared spectra of triethylamine. Acta Physica Sinica, doi: 10.7498/aps.71.20220123
    [4] Shaomin Li,  Liqun Sun. Large absorbance methane measurement based on wavelength modulation spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.71.20221725
    [5] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [6] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.68.20191510
    [7] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, doi: 10.7498/aps.67.20181401
    [8] Wang Cheng-Jie, Shi Fa-Zhan, Wang Peng-Fei, Duan Chang-Kui, Du Jiang-Feng. Nanoscale magnetic field sensing and imaging based on nitrogen-vacancy center in diamond. Acta Physica Sinica, doi: 10.7498/aps.67.20180243
    [9] Liao Qing-Hong, Ye Yang, Li Hong-Zhen, Zhou Nan-Run. Quadrature squeezing of the system consisting of nitrogen-vacancy centers in diamond coupled to cavity field and mechanical resonator. Acta Physica Sinica, doi: 10.7498/aps.67.20172170
    [10] Wang An-Jing, Fang Yong-Hua, Li Da-Cheng, Cui Fang-Xiao, Wu Jun, Liu Jia-Xiang, Li Yang-Yu, Zhao Yan-Dong. Simulation of pollutant-gas-cloud infrared spectra under plane-array detecting. Acta Physica Sinica, doi: 10.7498/aps.66.114203
    [11] Liu Jiang-Ping, Li Jun, Liu Yuan-Qiong, Lei Hai-Le, Wei Jian-Jun. Infrared absorption of deuterium molecules at low temperature. Acta Physica Sinica, doi: 10.7498/aps.63.023301
    [12] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, doi: 10.7498/aps.63.228501
    [13] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, doi: 10.7498/aps.63.048101
    [14] Li Xin, Yang Meng-Shi, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. DFT research on the IR spectrum of glycine tryptophan oligopeptides chain. Acta Physica Sinica, doi: 10.7498/aps.62.156103
    [15] Pan Yue, Zhao Qiang, Jiang Ge, Zhou Yang, Jiang Mei-Fu, Yang Yi-Shang. Influence of SiC intermediate layer on adhesion property of F-DLC film. Acta Physica Sinica, doi: 10.7498/aps.62.015209
    [16] Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang. Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides. Acta Physica Sinica, doi: 10.7498/aps.60.037803
    [17] Bi Peng, Liu Yuan-Qiong, Tang Yong-Jian, Yang Xiang-Dong, Lei Hai-Le. Infrared absorption of liquid-hydrogen planar cryotargets. Acta Physica Sinica, doi: 10.7498/aps.59.7531
    [18] Yang Wu-Bao, Fan Song-Hua, Zhang Gu-Ling, Ma Pei-Ning, Zhang Shou-Zhong, Du Jian. Investigation of diamond-like-carbon films prepared by unbalanced magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.54.4944
    [19] Yang Wu-Bao, Wang Jiu-Li, Zhang Gu-Ling, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. Diamond-like carbon films deposited on optical glass substrate by using ECR microwave acetone plasma CVD method. Acta Physica Sinica, doi: 10.7498/aps.53.3099
    [20] LING ZHI-HUA. STUDY OF POLARIZED FT-IR FOR ANTIFERROELECTRIC LIQUID CRYSTAL TFMHxPOCBC-D2 IN A HOMEOTROPICALLY ALIGNED CELL. Acta Physica Sinica, doi: 10.7498/aps.50.227
Metrics
  • Abstract views:  88
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Available Online:  10 December 2024

/

返回文章
返回