Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

White organic light-emitting devices based on phosphor-sensitized fluorescence

ZOU Wenjing ZHAO Yukang WU Youzhi ZHANG Cairong

Citation:

White organic light-emitting devices based on phosphor-sensitized fluorescence

ZOU Wenjing, ZHAO Yukang, WU Youzhi, ZHANG Cairong
cstr: 32037.14.aps.74.20241294
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Although phosphorescent organic light-emitting devices (OLEDs) can have an internal quantum efficiency (IQE) of 100%, the IQE usually decays at high current densities due to triplet-triplet annihilation. Phosphor-sensitized fluorescence can realize the energy transfer between phosphorescent emitter and fluorescent emitter, and can be used to suppress the efficiency fluctuations and adjust the color of the device. With this in mind, white light emission including different colors of phosphorescent emitter and fluorescent emitter can be expected. Herein, phosphor-sensitized fluorescent white OLEDs are fabricated by combining ultra-thin layer insertion and doping, in which laser dyes DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran), iridium complexes Ir(ppy)3 (tris(2-phenylpyridine)iridium), and biphenyl ethylene derivatives BCzVB (1,4-bis[2- (3-N-ethylcarbazoryl)vinyl]benzene) are used as red, green and blue emitters, respectively. By adjusting the doping concentration of Ir(ppy)3 phosphorescent green emitter in CBP (4,4’-N,N’-dicarbazole-biphyenyl) host, with ultra-thin layers of BCzVB fluorescent blue emitter on both sides of CBP:Ir(ppy)3 doping system and with ultra-thin layer of DCM fluorescent red emitter inserting in CBP:Ir(ppy)3 layer, the three colors can be balanced. White emissions are obtained in the device, the highest external quantum efficiency is 2.5% (current efficiency of 5.1 cd/A), the maximum brightness is 12400 cd/m2, and Commission Internationale de l'Eclairage (CIE) co-ordinates can reach the ideal white light equilibrium point (0.33, 0.33) at a current density of 1 mA/cm2. The acquisition of white light is attributed to the appropriate doping ratio of Ir(ppy)3 and the position of DCM, which effectively balances the emission ratio of three primary colors: red, green, and blue. The results indicate that the partially energy transfer of triplet excitons to singlet excitons by phosphor-sensitized fluorescence scheme can be used to realize high-efficiency white organic electroluminescent devices, thereby reducing energy consumption and providing more room for promoting OLED applications.
      Corresponding author: WU Youzhi, youzhiwu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11964016).
    [1]

    Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar

    [2]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [3]

    Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar

    [4]

    Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar

    [5]

    Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar

    [6]

    Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar

    [7]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar

    [8]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar

    [9]

    Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar

    [10]

    Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar

    [11]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [12]

    Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar

    [13]

    Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar

    [14]

    Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar

    [15]

    D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar

    [16]

    Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar

    [17]

    Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar

    [18]

    Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710

    [19]

    Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar

    [20]

    Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar

    [21]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [22]

    Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar

    [23]

    Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar

    [24]

    Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar

    [25]

    Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar

    [26]

    Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar

    [27]

    邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21

    Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21

    [28]

    Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar

    [29]

    Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar

  • 图 1  有机材料的化学结构

    Figure 1.  The chemical structure of organic materials.

    图 2  (a) OLED器件结构示意图; (b) OLED器件能级结构示意图

    Figure 2.  Schematic diagram of (a) device structure and (b) the corresponding energy level of the OLED.

    图 3  不同Ir(ppy)3掺杂浓度(6%, 3%, 1%, 0.7%和0.4%)器件的EL光谱图(@20 mA/cm2)

    Figure 3.  EL spectra (@20 mA/cm2) of devices with different Ir(ppy)3 doping concentrations (6%, 3%, 1%, 0.7%, 0.4%).

    图 4  BCzVB/CBP:Ir(ppy)3结构能量传递原理图

    Figure 4.  Schematic diagram of the energy transfer with the structure of BCzVB/ CBP:Ir(ppy)3.

    图 5  不同Ir(ppy)3掺杂浓度(6%, 3%, 1%, 0.7%, 0.4%)器件的电流效率-电流密度-亮度特性曲线

    Figure 5.  Current efficiency-current density-brightness characteristics of devices with different Ir(ppy)3 doping concentrations (6%, 3%, 1%, 0.7%, 0.4%).

    图 6  在0.7% Ir(ppy)3掺杂浓度条件下两侧蒸镀和单侧蒸镀BCzVB器件EL光谱(@20 mA/cm2)比较

    Figure 6.  Comparison of EL spectra (@ 20 mA/cm2) of devices with BCzVB deposited on both and one sides at a doping concentration of 0.7% Ir(ppy)3.

    图 7  CBP (20 nm), CBP:Ir(ppy)3 (0.7%, 20 nm)和BCzVB (0.3 nm)/CBP:Ir(ppy)3(0.7%, 20 nm)/BCzVB (0.3 nm)薄膜的激发和光致发光光谱

    Figure 7.  Excitation and Photoluminescence spectra of CBP (20 nm), CBP:Ir(ppy)3 (0.7%, 20 nm) and BCzVB (0.3 nm)/CBP:Ir(ppy)3 (0.7%, 20 nm)/BCzVB (0.3 nm) film.

    图 8  DCM超薄层在CBP:Ir(ppy)3中离(+)BCzVB/CBP:Ir(ppy)3阳极侧界面距离分别为y = 10, 12, 14, 16 nm器件的EL光谱(@20 mA/cm2)

    Figure 8.  EL spectra (@20 mA/cm2) of devices with ultra-thin DCM layer in CBP:Ir(ppy)3 at distances of y = 10, 12, 14, 16 nm, respectively, from the (+) BCzVB/CBP:Ir (ppy)3 interface at anode side.

    图 9  BCzVB/CBP:Ir(ppy)3/DCM/CBP:Ir(ppy)3/BCzVB结构能量传递原理图

    Figure 9.  Schematic diagram of the energy transfer with the structure of BCzVB/CBP:Ir(ppy)3/DCM/CBP:Ir(ppy)3/BCzVB.

    图 10  DCM超薄层在CBP:Ir(ppy)3中离(+)BCzVB/CBP:Ir(ppy)3阳极侧界面距离分别为y = 10, 12, 14, 16 nm器件的 (a)电流密度-电压特性曲线; (b)电流效率-电流密度-亮度特性曲线

    Figure 10.  Current density-voltage (a) and current efficiency-current density-brightness (b) characteristics of devices with ultra-thin DCM layer in CBP:Ir(ppy)3 at distances of y = 10, 12, 14, 16 nm, respectively, from the (+) BCzVB/CBP:Ir(ppy)3 interface at anode side.

    图 11  y = 12 nm器件在不同电流密度(电压)下的EL光谱图

    Figure 11.  EL spectra of the device with y = 12 nm at different current density (voltage).

    表 1  对应y = 10, 12, 14, 16 nm器件的CIE色坐标变化范围(@0.2—200 mA/cm2)

    Table 1.  Variation of CIE color coordinates of devices with y = 10, 12, 14, 16 nm (@0.2–200 mA/cm2)

    器件CIE色坐标变化范围
    B1 (y = 10)(0.28—0.22, 0.32—0.21)
    B2 (y = 12)(0.34—0.23, 0.36—0.23)
    B3 (y = 14)(0.41—0.25, 0.40—0.26)
    B4 (y = 16)(0.46—0.27, 0.43—0.31)
    DownLoad: CSV

    表 2  OLED器件性能总结

    Table 2.  Summary of the EL performances of the OLED.

    器件最大电流效率/(cd·A–1)最高亮度/(cd·m–2)
    A0 (x = 0.7)9.5323760
    A1 (x = 6)54.9104900
    A2 (x = 3)52.1111276
    A3 (x = 1)45.482830
    A4 (x = 0.7)34.939072
    A5 (x = 0.4)28.235046
    B1 (y = 10)5.112400
    B2 (y = 12)4.411900
    B3 (y = 14)3.611500
    B4 (y = 16)2.8510800
    DownLoad: CSV
  • [1]

    Kido J, Hongawa K, Okuyama K 1994 Appl. Phys. Lett. 64 815Google Scholar

    [2]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [3]

    Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012 Appl. Phys. Lett. 100 133304Google Scholar

    [4]

    Cho J T, Kim D H, Koh E I, Kim T W 2014 Thin Solid Films 570 63Google Scholar

    [5]

    Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020 J. Mater. Chem. C 8 6577Google Scholar

    [6]

    Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010 J. Appl. Phys. 108 113113Google Scholar

    [7]

    Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009 Adv. Funct. Mater. 19 84Google Scholar

    [8]

    Sun Y, Forrest S R 2007 Appl. Phys. Lett. 91 263503Google Scholar

    [9]

    Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009 Appl. Phys. Lett. 94 163305Google Scholar

    [10]

    Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014 Opt. Laser Technol. 56 20Google Scholar

    [11]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [12]

    Reineke S, Schwartz G, Walzer K, Leo K 2007 Appl. Phys. Lett. 91 123508Google Scholar

    [13]

    Baldo M A, Thompson M E, Forrest S R 2000 Nature 403 750Google Scholar

    [14]

    Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018 Nat. Commun. 9 4990Google Scholar

    [15]

    D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001 Appl. Phys. Lett. 79 1045Google Scholar

    [16]

    Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034Google Scholar

    [17]

    Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564Google Scholar

    [18]

    Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710

    [19]

    Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021 Appl. Phys. Lett. 119 053301Google Scholar

    [20]

    Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023 Electronics 12 3164Google Scholar

    [21]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [22]

    Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021 J. Phys. Chem. C 125 22809Google Scholar

    [23]

    Yang S H, Huang S F, Chang C H, Chung C H 2011 J. Lumin. 131 2106Google Scholar

    [24]

    Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002 Chem. Mater. 14 357Google Scholar

    [25]

    Petrova P K, Ivanov P I, Tomova R L 2014 J. Phys. : Conf. Ser. 558 012028Google Scholar

    [26]

    Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014 RSC Adv. 5 4261Google Scholar

    [27]

    邹文静, 吴有智, 张材荣 2024 兰州理工大学学报 50 21

    Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21

    [28]

    Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002 Phys. Rev. Lett. 89 107401Google Scholar

    [29]

    Liu Z G, Chen Z J, Gong H Q 2005 Chinese Phys. Lett. 22 1536Google Scholar

  • [1] Xu Chong, Niu Lian-Bin, Qian Ya-Cui, Wen Lin, Xiong Yuan-Qiang, Peng Hao-Nan, Guan Yun-Xia. Research on Fe(NH2trz)3·(BF4)2 doped polyfluorene organic light-emitting devices. Acta Physica Sinica, 2021, 70(7): 077202. doi: 10.7498/aps.70.20201444
    [2] Xiao Xin-Ming, Zhu Long-Shan, Guan Yu, Hua Jie, Wang Hong-Mei, Dong He, Wang Jin. Highly efficient all-phosphorescent white organic light-emitting diodes with low efficiency roll-off and stable-color by managing triplet excitons in emissive layer. Acta Physica Sinica, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [3] Tao Hong, Gao Dong-Yu, Liu Bai-Quan, Wang Lei, Zou Jian-Hua, Xu Miao, Peng Jun-Biao. Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer. Acta Physica Sinica, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [4] Wu Qing-Yang, Xie Guo-Hua, Zhang Zhen-Song, Yue Shou-Zhen, Wang Peng, Chen Yu, Guo Run-Da, Zhao Yi, Liu Shi-Yong. Highly efficient all fluorescent white organic light-emitting devices made by sequential doping. Acta Physica Sinica, 2013, 62(19): 197204. doi: 10.7498/aps.62.197204
    [5] Liu Yong-Jun, Wang Fei-Ru, Sun Wei-Min, Liu Xiao-Qi, Zhang Ling-Li. Tunable capability of dye-doped cholesteric liquid crystal lasers. Acta Physica Sinica, 2013, 62(7): 076101. doi: 10.7498/aps.62.076101
    [6] Zhang Xin-Wen, Hu Qi. Stability of organic light-emitting device. Acta Physica Sinica, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [7] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [8] Chen Ping, Zhao Li, Duan Yu, Cheng Gang, Zhao Yi, Liu Shi-Yong. A novel charge generation layer for stacked organic light-emitting devices. Acta Physica Sinica, 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [9] Qiao Shi-Zhu, Zhao Jun-Qing, Jia Zhen-Feng, Zhang Ning-Yu, Wang Feng-Xiang, Fu Gang, Ji Yan-Ju. Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices. Acta Physica Sinica, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [10] Niu Lian-Bin, Guan Yun-Xia. Fullerene-doped hole transport NPB layer in organic light-emitting devices. Acta Physica Sinica, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [11] Wen Wen, Wang Bo, Li Lu, Yu Jun-Sheng, Jiang Ya-Dong. High performance white organic light-emitting devices based on a novel red fluorescent dye 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene. Acta Physica Sinica, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [12] Wu Xiao-Ming, Hua Yu-Lin, Yin Shou-Gen, Zhang Guo-Hui, Hui Juan-Li, Zhang Li-Juan, Wang Yu. Properties of white organic electroluminescent device with double light-emitting layers based upon different hosts. Acta Physica Sinica, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [13] Wu Chun-Hong, Liu Peng-Yi, Hou Lin-Tao, Li Yan-Wu. The energy transfer in phosphorescent dye PtOEP doped organic molecule Alq. Acta Physica Sinica, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [14] Zhang Li-Juan, Hua Yu-Lin, Wu Xiao-Ming, Zhang Guo-Hui, Wang Yu, Yin Shou-Gen. A novel white organic electroluminescent device with both phosphorescent and fluorescent dopants. Acta Physica Sinica, 2008, 57(3): 1913-1917. doi: 10.7498/aps.57.1913
    [15] Tang Xiao-Qing, Yu Jun-Sheng, Li Lu, Wang Jun, Jiang Ya-Dong. Electroluminescence of an iridium complex phosphorescent material doped polymeric system. Acta Physica Sinica, 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [16] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [17] Zhang Guo-Hui, Hua Yu-Lin, Wu Xiao-Ming, Yin Shou-Gen, Niu Xia, Hui Juan-Li, Wang Yu, Zhang Li-Juan. Fabrication of a new organic multilayer phosphorescent white-light-emitting device and evaluation of its characteristics. Acta Physica Sinica, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [18] Zhang Guo-Hui, Hua Yu-Lin, Wu Kong-Wu, Wu Xiao-Ming, Yin Shou-Gen, Hui Juan-Li, An Hai-Ping, Zhu Fei-Jian, Niu Xia. Using BCP layer to control the chroma of white phosphorescent organic light-emitting device. Acta Physica Sinica, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [19] Zhang Xiao-Bo, Cao Jin, Wei Fu-Xiang, Jiang Xue-Yin, Zhang Zhi-Lin, Zhu Wen-Qing, Xu Shao-Hong. High efficiency organic red electrophosphorescence devices with changing thickness of the emitting layer. Acta Physica Sinica, 2006, 55(1): 119-124. doi: 10.7498/aps.55.119
    [20] YANG SHENG-YI, XU ZHENG, LIU SHAN-SHAN, DONG JIN-FENG, ZHANG TING, XU XU-RONG, ZHANG LI, YANG ZHAN-LAN, WU JIN-GUANG. PURE GREEN AND NARROW BANDWIDTH ELECTROLUMINESCENCE FROM ORGANIC LIGHT-EMITTING DIODES . Acta Physica Sinica, 2001, 50(5): 973-976. doi: 10.7498/aps.50.973
Metrics
  • Abstract views:  807
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2024
  • Accepted Date:  20 November 2024
  • Available Online:  10 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回