Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser

Long Tian-Yang Li Wei Xu Hao-Tian Wang Xiao

Citation:

Influence of spatiotemporal coupling distortion on evaluation of pulse-duration-charactrization and focused intensity of ultra-fast and ultra-intensity laser

Long Tian-Yang, Li Wei, Xu Hao-Tian, Wang Xiao
PDF
HTML
Get Citation
  • In a large-scale ultra-fast and ultra-intensity laser system, with the increase of spectral bandwidth and beam aperture, the spatiotemporal coupling distortion will become more and more significant. This effect will not only degrade the beam quality and reduce the focusing intensity of the laser, but also invalidate the conventional evaluation method for laser far-field parameters. A pair of beam-expanding lenses, which may bring spatiotemporal coupling distortion to an ultrashort laser pulse, is taken as an example. And the influence of spatiotemporal coupling distortion on laser parameter measurement is analyzed in detail. It shows that in an ultrashort pulse laser system, an ordinary beam-expanding lens-pair can reduce the far-field peak intensity dramatically, and the actual pulse duration in the far field is more than 10 times longer than that measured at the near field by a single-shot autocorrelator. In this case, the focusing intensity estimated by using the measured value of near-field pulse width will be one order of magnitude bigger than the real value. It is expected that the results will be helpful in the optimal design of a laser system, the accurate characterization of an ultrafast laser pulse and relevant physical experiments.
      Corresponding author: Long Tian-Yang, 1770095103@qq.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404804).
    [1]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160Google Scholar

    [2]

    Gaul E W, Ditmire T, Martinez M D, Douglas S, Gorski D, Hays G R, Henderson W, Erlandson A, Caird J, Ebbers C, Iovanovic I, Molander W 2005 Conference on Lasers and Electro-Optics Baltimore, Maryland United States, May 22–27, 2005 p2026

    [3]

    Danson C N, Brummitt P A, Clarke R J, Collier J L, Fell B, Frackiewicz A J, Hancock S, Hawkes S, Hernandez-Gomez C, Holligan P 2004 Nucl. Fusion 44 p239Google Scholar

    [4]

    彭翰生 2006 中国激光 33 865Google Scholar

    Peng H S 2006 Chin. J. Lasers 33 865Google Scholar

    [5]

    Center for Relativistic Laser Science, Ultrahigh Intensity Lasers https://www.ibs.re.kr/corels/ [2020-1-1]

    [6]

    Bor Z 1989 Opt. Lett. 14 119Google Scholar

    [7]

    胡必龙 2020 硕士学位论文 (绵阳: 中国工程物理研究院) 第13页

    Hu B L 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics) p13 (in Chinese)

    [8]

    Kempe M, Rudolph W 1993 Opt. Lett. 18 137Google Scholar

    [9]

    俞胜清, 黄晓俊 2011 科技创新导报 2011 216Google Scholar

    Yu S Q, Huang X J 2011 Sci. Technol. Innov. Her. 2011 216Google Scholar

    [10]

    俞胜清, 王峰, 黄晓俊 2010 喀什大学学报 31 44Google Scholar

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Univ. 31 44Google Scholar

    [11]

    王小怀, 张庆 2005 实验室研究与探索 24 40Google Scholar

    Wang X H, Zhang Q 2005 Res. Explor. Lab. 24 40Google Scholar

    [12]

    王仕璠 2020 信息光学理论与应用(第四版)(北京: 北京邮电大学出版社) 第64页

    Wang S F 2020 Information Optics Theory and Applications (Vol. 4) (Beijing: Beijing University of Posts and Telecommunications Press) p64 (in Chinese)

    [13]

    郝欣, 朱启华, 王逍, 耿远超, 周凯南, 黄征, 王凤蕊 2008 中国激光 35 1553Google Scholar

    Hao X, Zhu Q H, Wang X, Geng Y C, Zhou K N, Huang Z, Wang F R 2008 Chin. J. Lasers 35 1553Google Scholar

    [14]

    Raghuramaiah M, Sharma A K, Naik P A, Gupta P D, Ganeev R A 2001 Sadhana 26 603Google Scholar

    [15]

    Zuo Y L, Zhou K N, Wu Z H, Wang X, Xie N, Su J Q, Zeng X M 2016 Laser Phys. Lett. 13 055302Google Scholar

    [16]

    李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦 2021 物理学报 70 234201Google Scholar

    Li W, Wang X, Mu J, Hu B L, Zeng X M, Zuo Y L, Wu Z H, Wang X D, Li Z L, Su J Q 2021 Acta Phys. Sin. 70 234201Google Scholar

  • 图 1  (a) 光路示意图; (b) 计算示意图

    Figure 1.  (a) Schematic of the optical path; (b) schematic of calculation.

    图 2  单次自相关测试原理及分析模型示意图

    Figure 2.  Schematic diagram of the single-shot autocorrelation principle and analytical model.

    图 3  扩束透镜组引入的时空耦合畸变 (a1) 考虑透镜组色差时远场光斑; (a2) 理想情况下的远场光斑; (b1) 考虑透镜组色差时远场环围能量曲线; (b2) 理想情况下远场环围能量曲线; 理想情况下近场(c1)及远场(c2)的光场时空分布; 激光脉冲经过透镜组并依据近场中心点进行色散补偿后的近场(d1)及远场(d2)时空耦合畸变

    Figure 3.  Spatiotemporal coupling distortion introduced by lens-pair: The far-field distribution with chromatic aberration of the lens-pair (a1) & without chromatic aberration (a2); circled energy graph of the far-field with chromatic aberration of the lens-pair (b1) & without chromatic aberration (b2); the spatio-temporal distribution of the laser pulse in the near-field (c1) and far-field (c2) without chromatic aberration; The spatio-temporal coupling distortion in the near-field (d1) and far-field (d2) in case of the laser pulse passing through the lens-pair with dispersion compensation according to the near-field centroid.

    图 4  考虑色差(蓝色线)和不考虑色差(红色线)时远场脉宽、焦斑面积和远场功率密度随光束口径和带宽的变化 (a1) 远场脉宽随光束口径变化情况; (a2) 焦斑面积随光束口径变化情况; (a3) 远场功率密度随光束口径变化情况; (b1) 远场脉宽随带宽变化情况; (b2) 焦斑面积随带宽变化情况; (b3) 远场功率密度随带宽变化情况

    Figure 4.  Variation of far-field pulse width, focal spot area and far-field power density with beam aperture and bandwidth (blue line: with chromatic aberration; red line: without chromatic aberration): (a1) The variation of far-field pulse with beam aperture; (a2) the variation of focal spot area with beam aperture; (a3) the variation of far-field power density with beam aperture; (b1) the variation of far-field pulse width with bandwidth; (b2) the variation of focal spot area with bandwidth; (b3) the variation of far-field power density with bandwidth.

    图 5  单次自相关脉宽测试分析对比 (a1) 有色差时基频光信号; (a2) 有色差时单次自相关倍频信号(空-时分布); (a3) 有色差时单次自相关仪信号; (b1) 理想条件下的基频信号; (b2) 理想条件下自相关倍频信号空-时分布; (b3) 理想条件下单次自相关仪信号; (c1) 通过透镜组后远场处(焦平面内)的积分通量时间波形; (c2) 通过理想无像差透镜组时远场处的积分通量时间波形

    Figure 5.  Analysis and comparison between the results from single-autocorrelation method and the actual far-field pulse shape: Fundamental frequency signal (a1), second harmonic signal (a2) and signal of an auto-correlator (a3) in case of the pulse passing through the lens-pair with chromatic aberration; fundamental frequency signal (b1), second harmonic signal (b2) and signal of an auto-correlator (b-3) in case of ideal condition without chromatic aberration; (c1) actual temporal shape of the pulse at the far field with chromatic aberration of lens-pair; (c2) actual temporal shape of the pulse at the far field without chromatic aberration of lens-pair

    表 1  计算参数

    Table 1.  Parameters for calculation.

    对象项目具体参数
    输入光束口径/m0.12 × 0.12
    中心波长/nm800
    光谱范围/nm± 80
    近场超高斯分布阶数6
    频谱超高斯分布阶数6
    透镜1尺寸/m0.2 × 0.2
    材料K9
    前球面曲率半径
    后球面曲率半径/m1.1789
    中心厚度/m0.03
    透镜2尺寸/m0.4 × 0.4
    材料K9
    前球面曲率半径/m3.5367
    后球面曲率半径
    中心厚度/m0.05
    抛物聚焦镜尺寸/m0.5 × 0.5
    焦距/m1
    DownLoad: CSV
  • [1]

    Perry M D, Pennington D, Stuart B C, Tietbohl G, Britten J A, Brown C, Herman S, Golick B, Kartz M, Miller J, Powell H T, Vergino M, Yanovsky V 1999 Opt. Lett. 24 160Google Scholar

    [2]

    Gaul E W, Ditmire T, Martinez M D, Douglas S, Gorski D, Hays G R, Henderson W, Erlandson A, Caird J, Ebbers C, Iovanovic I, Molander W 2005 Conference on Lasers and Electro-Optics Baltimore, Maryland United States, May 22–27, 2005 p2026

    [3]

    Danson C N, Brummitt P A, Clarke R J, Collier J L, Fell B, Frackiewicz A J, Hancock S, Hawkes S, Hernandez-Gomez C, Holligan P 2004 Nucl. Fusion 44 p239Google Scholar

    [4]

    彭翰生 2006 中国激光 33 865Google Scholar

    Peng H S 2006 Chin. J. Lasers 33 865Google Scholar

    [5]

    Center for Relativistic Laser Science, Ultrahigh Intensity Lasers https://www.ibs.re.kr/corels/ [2020-1-1]

    [6]

    Bor Z 1989 Opt. Lett. 14 119Google Scholar

    [7]

    胡必龙 2020 硕士学位论文 (绵阳: 中国工程物理研究院) 第13页

    Hu B L 2020 M. S. Thesis (Mianyang: China Academy of Engineering Physics) p13 (in Chinese)

    [8]

    Kempe M, Rudolph W 1993 Opt. Lett. 18 137Google Scholar

    [9]

    俞胜清, 黄晓俊 2011 科技创新导报 2011 216Google Scholar

    Yu S Q, Huang X J 2011 Sci. Technol. Innov. Her. 2011 216Google Scholar

    [10]

    俞胜清, 王峰, 黄晓俊 2010 喀什大学学报 31 44Google Scholar

    Yu S Q, Wang F, Huang X J 2010 J. Kashgar Univ. 31 44Google Scholar

    [11]

    王小怀, 张庆 2005 实验室研究与探索 24 40Google Scholar

    Wang X H, Zhang Q 2005 Res. Explor. Lab. 24 40Google Scholar

    [12]

    王仕璠 2020 信息光学理论与应用(第四版)(北京: 北京邮电大学出版社) 第64页

    Wang S F 2020 Information Optics Theory and Applications (Vol. 4) (Beijing: Beijing University of Posts and Telecommunications Press) p64 (in Chinese)

    [13]

    郝欣, 朱启华, 王逍, 耿远超, 周凯南, 黄征, 王凤蕊 2008 中国激光 35 1553Google Scholar

    Hao X, Zhu Q H, Wang X, Geng Y C, Zhou K N, Huang Z, Wang F R 2008 Chin. J. Lasers 35 1553Google Scholar

    [14]

    Raghuramaiah M, Sharma A K, Naik P A, Gupta P D, Ganeev R A 2001 Sadhana 26 603Google Scholar

    [15]

    Zuo Y L, Zhou K N, Wu Z H, Wang X, Xie N, Su J Q, Zeng X M 2016 Laser Phys. Lett. 13 055302Google Scholar

    [16]

    李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦 2021 物理学报 70 234201Google Scholar

    Li W, Wang X, Mu J, Hu B L, Zeng X M, Zuo Y L, Wu Z H, Wang X D, Li Z L, Su J Q 2021 Acta Phys. Sin. 70 234201Google Scholar

  • [1] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] Yi You-Jian, Ding Fu-Cai, Zhu Ping, Zhang Dong-Jun, Liang Xiao, Sun Mei-Zhi, Guo Ai-Lin, Yang Qing-Wei, Kang Hai-Tao, Yao Xiu-Yu, Li Zhao-Liang, Xie Xing-Long, Zhu Jian-Qiang. Wavelength encoded single-shot high-spatiotemporal resolution all-optical probe. Acta Physica Sinica, 2023, 72(22): 220602. doi: 10.7498/aps.72.20230727
    [3] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [4] Wang Yang, Liu Yu, Wu Cheng-Yin. Generation, manipulation, and application of high-order harmonics in solids. Acta Physica Sinica, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [5] Li Wei, Wang Xiao, Hong Yi-Lin, Zeng Xiao-Ming, Mu Jie, Hu Bi-Long, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Single-frame measurement of complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral interferometry. Acta Physica Sinica, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [6] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [7] Li Wei, Wang Xiao, Mu Jie, Hu Bi-Long, Zeng Xiao-Ming, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Measurement of spatiotemporal coupling characteristics of ultra broadband pulsed laser beam based on spatial spectrum interferometric scanning. Acta Physica Sinica, 2021, 70(23): 234201. doi: 10.7498/aps.70.20210996
    [8] Single-frame measurement of the complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral Interferometry. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211665
    [9] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] Niu Lu, Wang Lu-Xia. Effect of external field on the I-V characteristics through the molecular nano-junction. Acta Physica Sinica, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [11] Yang Chao, Gu Cheng-Lin, Liu Yang, Wang Chao, Li Jiang, Li Wen-Xue. Dual repetition-rate mode-locked Yb: YAG ceramic laser. Acta Physica Sinica, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [12] Xia Yan-Wen, Shen Miao, Sun Zhi-Hong, Peng Zhi-Tao, Lu Zong-Gui, Zhou Song, Zhang Bo, Su Jing-Qin. A new technique for measuring single-shot ultrashort laser pulse. Acta Physica Sinica, 2017, 66(4): 044204. doi: 10.7498/aps.66.044204
    [13] Zhang Tong-Wei, Yang Kun-De, Ma Yuan-Liang, Wang Yong. A robust localization method for source localization based on the auto-correlation function of wide-band signal. Acta Physica Sinica, 2015, 64(2): 024303. doi: 10.7498/aps.64.024303
    [14] Wang Yan-Zhi, Shao Jian-Da, Yi Kui, Qi Hong-Ji, Wang Ding, Leng Yu-Xin. Design and fabrication of broadband chirped mirror pair. Acta Physica Sinica, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [15] Liu Hua-Gang, Huang Jian-Hong, Weng Wen, Li Jin-Hui, Zheng Hui, Dai Shu-Tao, Zhao Xian, Wang Ji-Yang, Lin Wen-Xiong. High power all-normal-dispersion mode-locked Yb3+-doped double-clad fiber femtosecond laser. Acta Physica Sinica, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [16] Niu Hai-Liang, Zhang Yue-Guang, Shen Wei-Dong, Yu Peng, Li Yang-Hui, Liu Xu. Design of ultrabroadband double-chirped mirror pairs for ultrafast lasers. Acta Physica Sinica, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [17] Deng Yu-Qiang, Sun Qing, Yu Jing. Direct measurement of group delay of optical elements. Acta Physica Sinica, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [18] Gao Rui-Xin, Xu Zhen, Chen Da-Xin, Xu Chu-Dong, Chen Zhi-Feng, Liu Xiao-Dong, Zhou Shi-Ming, Lai Tian-Shu. RE-TM antiferromagnetic coupling and laser induced ultrafast magnetization reversal dynamics in GdFeCo magneto-optical films. Acta Physica Sinica, 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [19] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [20] ZHANG ZHAO-YUAN, QU LIN-JIE, LIU CHENG-HUI, HUO CHONG-RU. SINGLE-DELAY MEASUREMENT OF ULTRASHORT LIGHT PULSES BY THIRD ORDER INTENSITY CORRELATION. Acta Physica Sinica, 1982, 31(2): 213-219. doi: 10.7498/aps.31.213
Metrics
  • Abstract views:  4838
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2022
  • Accepted Date:  21 April 2022
  • Available Online:  25 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回