Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wavelength encoded single-shot high-spatiotemporal resolution all-optical probe

Yi You-Jian Ding Fu-Cai Zhu Ping Zhang Dong-Jun Liang Xiao Sun Mei-Zhi Guo Ai-Lin Yang Qing-Wei Kang Hai-Tao Yao Xiu-Yu Li Zhao-Liang Xie Xing-Long Zhu Jian-Qiang

Citation:

Wavelength encoded single-shot high-spatiotemporal resolution all-optical probe

Yi You-Jian, Ding Fu-Cai, Zhu Ping, Zhang Dong-Jun, Liang Xiao, Sun Mei-Zhi, Guo Ai-Lin, Yang Qing-Wei, Kang Hai-Tao, Yao Xiu-Yu, Li Zhao-Liang, Xie Xing-Long, Zhu Jian-Qiang
PDF
HTML
Get Citation
  • The laser probe is one of the main techniques for capturing ultrafast dynamic processes and has extensive applications in fields such as plasma physics, photochemistry, and biomedical science. In this work, a time-wavelength encoded optical probe generation scheme is proposed, which uses cascaded frequency doubling crystals with different phase-matching angles and independent delay lines to achieve time-wavelength encoding. This method offers single-shot high-spatiotemporal resolution, high frame rate, and a wide range of adjustable time windows. The temporal resolution of the optical probe depends on the pulse width of the second harmonic, which can be adjusted by changing the phase-matching angle of the frequency-doubling crystal. The time window of the optical probe is only related to the change in the delay line, which can be adjusted by changing the length of the delay line. Therefore, the time resolution and time window of the optical probe are independent of each other. An optical probe generation system is constructed with 247 fs temporal resolution, 4 μm spatial resolution, 4.05 THz maximal frame rate, and an adjustable time window from sub-picosecond to 3 ns. The three-dimensional spatiotemporal evolution process of plasma filaments is captured within a single shot by using the optical probe. The experimental results show that the ionization front of the plasma propagates forward at a velocity of $ {\left(2.963\pm 0.024\right)\times 10}^{8}\;{\rm{m}}/{\rm{s}} $, which is consistent with the theoretical prediction. This demonstrates the feasibility of using the probe for capturing ultrafast events. In the part of discussion, we analyze that the key parameters of the optical probe can reach a maximum frame rate of 35.7 THz, a maximum time resolution of 28 fs, and a time window range that can be adjusted from hundreds of femtoseconds to tens of nanoseconds. Finally, the optimal design parameters of the optical probe are given for different application scenarios. The optical probe generation scheme has good scalability and versatility, and can be combined with any wavelength decoding device, diffraction imaging, holographic imaging, tomography scanning, and other technologies. The high spatiotemporal resolution of the optical probe and the independent adjustability of its parameters provide a feasible solution for single-shot high spatiotemporal resolution captures of ultrafast dynamic processes on a multiple time scale.
      Corresponding author: Zhu Ping, zhp1990@siom.ac.cn ; Zhu Jian-Qiang, jqzhu@mail.shcnc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004403, 12074399, 12204500), the Chinese Academy of Sciences, China (Grant Nos. XDA25020105, 181231KYSB20170022, CXJJ-21S015), the Shanghai Committee of Science and Technology, China (Grant Nos. 22YF1455300, 20ZR1464400), and the Ministry of Science and Technology, China (Grant No. 2021YFE0116700).
    [1]

    Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar

    [2]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [3]

    Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar

    [4]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [5]

    Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar

    [6]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [7]

    Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar

    [8]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar

    [9]

    Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar

    [10]

    Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar

    [11]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [12]

    Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar

    [13]

    Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar

    [14]

    Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar

    [15]

    Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar

    [16]

    Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822

    [17]

    Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar

    [18]

    Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463

    [19]

    Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar

    [20]

    Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar

    [21]

    Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar

    [22]

    Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar

    [23]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [24]

    Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar

    [25]

    Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar

    [26]

    Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar

    [27]

    Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar

    [28]

    Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar

    [29]

    Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar

  • 图 1  倍频脉冲波长和倍频晶体相位匹配角$ \theta $的关系

    Figure 1.  Relationship between the wavelength of second harmonic and the phase-matching angle $ \theta $ of frequency-doubling crystal.

    图 2  探针光产生装置原理图. HBS, 谐波分束器; DL, 延迟线; BS, 分束器

    Figure 2.  Schematic of the optical probe generating device. HBS, harmonic beam splitter; DL, delay line; BS, beam splitter.

    图 3  实验装置 (a) 探针光产生装置 (BS, 分束镜; RM, 反射镜; HBS, 谐波分束镜; NDF, 中性密度衰减片; TS, 平移台; BC, 光束收集器; L1, 透镜; MO, 显微物镜); (b) 解码装置原理图(DOE, 衍射光学元件; IBPF, 干涉带通滤光片)

    Figure 3.  Experimental setup: (a) Optical probe generating setup (BS, beam splitter; RM, reflecting mirror; HBS, harmonic beam splitter; NDF, neutral density filter; TS, translation stage; BC, beam collector; L1, lens; MO, microscope objective); (b) schematic of decoding device (DOE, diffractive optical element; IBPF, interference bandpass filter).

    图 4  (a) 探针光的光谱; (b) 中心波长为416.49 nm的倍频光的时域信息; (c) 示波器测量的最大时间窗口

    Figure 4.  (a) Spectra of the optical probe; (b) temporal information of the second harmonic with a central wavelength of 416.49 nm; (c) maximum time window measured by an oscilloscope.

    图 5  飞秒激光诱导空气成丝的动力学过程 (a) 成像系统的空间分辨率; (b) 等离子体通道中部的动力学过程; (c) 不同发次的等离子体通道尾部的动力学过程

    Figure 5.  Dynamic process of femtosecond laser induced air filaments: (a) Spatial resolution of the imaging system; (b) dynamic process in the middle of the plasma channel; (c) dynamic process at the tail of the plasma channel on different shot.

    图 6  倍频脉冲的时间分辨率(蓝线)、光谱带宽(红线)和倍频晶体厚度的关系

    Figure 6.  Relationship between temporal resolution (blue line), spectral bandwidth (red line) and thickness of frequency-doubling crystal.

    图 7  探针光的时间窗口和倍频脉冲的光谱带宽的关系

    Figure 7.  Relationship between optimum time window of optical probe and spectral bandwidth of the second harmonic.

    表 1  不同场景中探针光的最优参数

    Table 1.  Optimal design of optical probe parameters in different scenarios.

    场景需求 倍频晶体
    厚度/mm
    时间分
    辨率/fs
    帧数 帧率/
    GHz
    时间窗
    口/ps
    超高帧率 0.1 28 4 35700 0.112
    高帧率和
    高帧数
    2.0 186 26 5370 4.8
    大时间窗口 2.0 186 26 2.6 10000
    DownLoad: CSV
  • [1]

    Buck A, Nicolai M, Schmid K, Sears C M S, Sävert A, Mikhailova J M, Krausz F, Kaluza M C, Veisz L 2011 Nat. Phys. 7 543Google Scholar

    [2]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401Google Scholar

    [3]

    Kodama R, Sentoku Y, Chen Z L, Kumar G R, Hatchett S P, Toyama Y, Cowan T E, Freeman R R, Fuchs J, Izawa Y, Key M H, Kitagawa Y, Kondo K, Matsuoka T, Nakamura H, Nakatsutsumi M, Norreys P A, Norimatsu T, Snavely R A, Stephens R B, Tampo M, Tanaka K A, Yabuuchi T 2004 Nature 432 1005Google Scholar

    [4]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [5]

    Labat M, Bielawski S, Loulergue A, Corde S, Couprie M E, Roussel E 2020 New J. Phys. 22 013051Google Scholar

    [6]

    Phillips K C, Gandhi H H, Mazur E, Sundaram S K 2015 Adv. Opt. Photonics 7 684Google Scholar

    [7]

    Irimiciuc S, Boidin R, Bulai G, Gurlui S, Nemec P, Nazabal V, Focsa C 2017 Appl. Surf. Sci. 418 594Google Scholar

    [8]

    Wu J, Wei W, Yang Z, Li X 2014 IEEE Trans. Plasma Sci. 42 2586Google Scholar

    [9]

    Luna H, Kavanagh K D, Costello J T 2007 J. Appl. Phys. 101 033302Google Scholar

    [10]

    Harvey-Thompson A J, Lebedev S V, Patankar S, Bland S N, Burdiak G, Chittenden J P, Colaitis A, De Grouchy P, Doyle H W, Hall G N, Khoory E, Hohenberger M, Pickworth L, Suzuki-Vidal F, Smith R A, Skidmore J, Suttle L, Swadling G F 2012 Phys. Rev. Lett. 108 145002Google Scholar

    [11]

    Matlis N H, Reed S, Bulanov S S, Chvykov V, Kalintchenko G, Matsuoka T, Rousseau P, Yanovsky V, Maksimchuk A, Kalmykov S, Shvets G, Downer M C 2006 Nat. Phys. 2 749Google Scholar

    [12]

    Lu Y, Wong T T W, Chen F, Wang L D 2019 Phys. Rev. Lett. 122 193904Google Scholar

    [13]

    Nakagawa K, Iwasaki A, Oishi Y, Horisaki R, Tsukamoto A, Nakamura A, Hirosawa K, Liao H, Ushida T, Goda K, Kannari F, Sakuma I 2014 Nat. Photonics 8 695Google Scholar

    [14]

    Sheinman M, Erramilli S, Ziegler L, Hong M K, Mertz J 2022 Opt. Lett. 47 577Google Scholar

    [15]

    Li Z, Zgadzaj R, Wang X, Chang Y Y, Downer M C 2014 Nat. Commun. 5 3085Google Scholar

    [16]

    Yeola S, Kuk D, Kim K Y 2017 J. Opt. Soc. Am. B: Opt. Phys. 35 2822

    [17]

    Ehn A, Bood J, Li Z, Berrocal E, Alden M, Kristensson E 2017 Light-Sci. Appl. 6 e17045Google Scholar

    [18]

    Moon J, Yoon S, Lim Y S, Choi W 2022 Opt. Express 28 4463

    [19]

    Inoue T, Matsunaka A, Funahashi A, Okuda T, Nishio K, Awatsuji Y 2019 Opt. Lett. 44 2069Google Scholar

    [20]

    Davidson Z E, Gonzalez-Izquierdo B, Higginson A, Lancaster K L, Williamson S D R, King M, Farley D, Neely D, McKenna P, Gray R J 2019 Opt. Express 27 4416Google Scholar

    [21]

    Kato K 1986 IEEE J. Quantum Electron. 22 1013Google Scholar

    [22]

    Nagy T, Simon P 2009 Opt. Express 17 8144Google Scholar

    [23]

    Zhu J, Xie X, Sun M, Kang J, Yang Q, Guo A, Zhu H, Zhu P, Gao Q, Liang X, Cui Z, Yang S, Zhang C, Lin Z 2018 High Power Laser Sci. Eng. 6 e29Google Scholar

    [24]

    Gabolde P, Trebino R 2008 J. Opt. Soc. Am. B: Opt. Phys. 25 A25Google Scholar

    [25]

    Yu W, Sheng Z M, Feng X P, Xu Z H, Zhu J H, Wang G G 1993 J. Phys. D: Appl. Phys. 26 1141Google Scholar

    [26]

    Kim D W, Xiao G Y, Ma G B 1997 Appl. Opt. 36 6788Google Scholar

    [27]

    Vogel A, Noack J, Hüttman G, Paltauf G 2005 Appl. Phys. B 81 1015Google Scholar

    [28]

    Monchoce S, Kahaly S, Leblanc A, Videau L, Combis P, Reau F, Garzella D, D’Oliveira P, Martin P, Quere F 2014 Phys. Rev. Lett. 112 145008Google Scholar

    [29]

    Batani K, Aliverdiev A, Benocci R, Dezulian R, Amirova A, Krousky E, Pfeifer M, Skala J, Dudzak R, Nazarov W, Batani D 2021 High Power Laser Sci. Eng. 9 e47Google Scholar

  • [1] Pan Bin-Xiong, Gong Cheng, Zhang Peng, Liu Zi-Ye, Pi Peng-Jian, Chen Wang, Huang Wen-Qiang, Wang Bao-Ju, Zhan Qiu-Qiang. Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning. Acta Physica Sinica, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [2] Shen Shan-Shan, Gu Guo-Hua, Chen Qian, He Rui-Qing, Cao Qing-Qing. Time-space united coding spread spectrum single photon counting imaging method. Acta Physica Sinica, 2023, 72(2): 024202. doi: 10.7498/aps.72.20221438
    [3] Zhang Di-Yu, Lan Wen-Di, Li Xue-Feng, Zhang Su-Su, Guo Fu-Ming, Yang Yu-Jun. Influence of driving-laser wavelength on emission of high-order harmonic wave generated by atoms irradiated by ultrashort laser pulse. Acta Physica Sinica, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [4] Li Hang, Chen Ping, Tian Jin-Shou, Xue Yan-Hua, Wang Jun-Feng, Gou Yong-Sheng, Zhang Min-Rui, He Kai, Xu Xiang-Yan, Sai Xiao-Feng, Li Ya-Hui, Liu Bai-Yu, Wang Xiang-Lin, Xin Li-Wei, Gao Gui-Long, Wang Tao, Wang Xing, Zhao Wei. High time-resolution detector based on THz pulse accelerating and scanning electron beam. Acta Physica Sinica, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [5] Li Wei, Wang Xiao, Hong Yi-Lin, Zeng Xiao-Ming, Mu Jie, Hu Bi-Long, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin. Single-frame measurement of complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral interferometry. Acta Physica Sinica, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [6] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [7] Research of a THz accelerating and scanning high time resolution detector. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210871
    [8] Single-frame measurement of the complete spatiotemporal field of ultrashort laser pulses using frequency domain separate spectral Interferometry. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211665
    [9] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [10] Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian. All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model. Acta Physica Sinica, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [11] Li Bin, Zhang Guo-Feng, Jing Ming-Yong, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single molecule optical-probes measured power law distribution of polymer dynamics. Acta Physica Sinica, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [12] Zhu Xiao-Song, Zhang Qing-Bin, Lan Peng-Fei, Lu Pei-Xiang. Molecular orbital imaging with high spatial and temperal resolutions. Acta Physica Sinica, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [13] Qin Hua, Lei Cheng-Xin, Liu Han-Fa, Ge Shuo-Shuo. Optical design of a reflective concentrator mirror utilizing higher order cylindrical surfaces. Acta Physica Sinica, 2013, 62(10): 104215. doi: 10.7498/aps.62.104215
    [14] Yang Hai-Yan, Wang Zhen-Yu, Li Ying-Zi, Zhang Wei-Ran, Qian Jian-Qiang. Investigation of enhancing higher harmonics by changing the shape of atomic force microscope cantilever. Acta Physica Sinica, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [15] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [16] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [17] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [18] He Xue-Peng, Liu Yuan-Xing, Liu Shi-Bing. On-line detecting and controlling conception for time-delay measurement in ultrafast laser pulse pump-probe. Acta Physica Sinica, 2011, 60(2): 024212. doi: 10.7498/aps.60.024212
    [19] GU MIN, TAN WEI-HAN, LIN ZUN-QI, BI WU-JI, YU WEN-YAN, DENG XI-MING. THE FINE STRUCTURES OF THE SECOND HARMONIC TIME RESOLVED SPECTRUM IN LASER PLASMAS. Acta Physica Sinica, 1987, 36(5): 655-659. doi: 10.7498/aps.36.655
    [20] TAN WEI-HAN, LIN ZUN-QI, GU MIN, SHI A-YING, YU WEN-YAN, DENG XI-MING. THE INFLUENCE OF LASER FREQUENCY BANDWIDTH ON THE TIME AND SPACE STRUCTURES OF THE 2ω0 HARMONIC GENERATION. Acta Physica Sinica, 1987, 36(5): 660-667. doi: 10.7498/aps.36.660
Metrics
  • Abstract views:  2973
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2023
  • Accepted Date:  18 August 2023
  • Available Online:  02 November 2023
  • Published Online:  20 November 2023

/

返回文章
返回