Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of nucleon scattering on 40Ca based on dispersive optical model

Zhao Xiu-Niao Du Wen-Qing

Citation:

Calculation of nucleon scattering on 40Ca based on dispersive optical model

Zhao Xiu-Niao, Du Wen-Qing
PDF
HTML
Get Citation
  • Spherical nucleus 40Ca is important structural and alloy material nucleus. Based on important theoretical value and application prospect of nuclear data of calcium isotopes, nucleon-nucleus scattering data on 40Ca nucleus, the main isotopes of natural calcium, are calculated by using dispersive optical model (DOM). The dispersive optical model potential is defined by energy-dependent real potentials, imaginary potentials, and also by the corresponding dispersive contributions to the real potential which are calculated analytically from the corresponding imaginary potentials by using a dispersion relation that follow from the requirement of causality. By fit simultaneously scattering experimental data for neutron and proton, an isospin-dependent dispersive optical model potential containing a dispersive term is derived. This derived potential in this work considers the nonlocality in the real “Hartree-Fock” potential $ V_{\rm{HF}} $ and introduces the shell gap in the definition of nuclear imaginary volume, surface and spin-orbit potentials near the Fermi energy. This dispersive optical model potential shows a good description of nucleon-nucleus scattering data on 40Ca nucleus up to 200 MeV including neutron total cross sections, neutron elastic scattering angular distributions, proton elastic scattering angular distributions, neutron analyzing powers and proton analyzing powers. In addition, the energy dependencies of calculated real volume integrals of dispersive optical model potential is shown, and a typical dispersive hump is seen around the Fermi energy. This dispersive hump behavior naturally obtained from dispersion relations, and allows the dispersion optical potential to get rid of energy dependent geometry, thus avoiding the use of a radius dependent on energy.
      Corresponding author: Du Wen-Qing, duwenqing@qymail.bhu.edu.cn
    [1]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [2]

    Mahaux C, Sartor R 1986 Phys. Rev. Lett. 57 3015Google Scholar

    [3]

    Morillon B, Romain P 2004 Phys. Rev. C 70 014601Google Scholar

    [4]

    Morillon B, Romain P 2006 Phys. Rev. C 74 014601Google Scholar

    [5]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S 2005 Phys. Rev. C 72 024604Google Scholar

    [6]

    Capote R, Soukhovitskiĩ E Sh, Quesada J M, Chiba S 2005 Phys. Rev. C 72 064610Google Scholar

    [7]

    Hao L J, Sun W L, Soukhovitskiĩ E Sh 2008 J. Phys. G: Nucl. Part. Phys. 35 095103Google Scholar

    [8]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin G, Soukhovitskii E Sh, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [9]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [10]

    Dickhoff W H, Charity R J 2019 Prog. Part. Nucl. Phys. 105 252Google Scholar

    [11]

    Zhao X N, Sun W L, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M, Capote R 2019 J. Phys. G: Nucl. Part. Phys. 46 055103Google Scholar

    [12]

    Zhao X N, Sun W L, Capote R, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [13]

    Zhao X N, Du W Q, Capote R, Soukhovitskiĩ E Sh 2023 Phys. Rev. C 107 064606Google Scholar

    [14]

    Perey F, Buck B 1962 Nucl. Phys. 32 353Google Scholar

    [15]

    Brown G E, Rho M 1981 Nucl. Phys. A 372 397Google Scholar

    [16]

    Delaroche J P, Wang Y, Rapaport J 1989 Phys. Rev. C 39 391Google Scholar

    [17]

    Molina A, Capote R, Quesada J M, Lozano M 2002 Phys. Rev. C 65 034616Google Scholar

    [18]

    Mahaux C, Sartor R 1991 Nucl. Phys. A 528 253Google Scholar

    [19]

    Lane A M 1962 Phys. Rev. Lett. 8 171Google Scholar

    [20]

    Lane A M 1962 Nucl. Phys. 35 676Google Scholar

    [21]

    Sukhovitskiĩ E Sh, Lee Y O, Chang J, Chiba S, Iwamoto O 2000 Phys. Rev. C 62 044605Google Scholar

    [22]

    EXchange FORmat database (EXFOR) is maintained by the Network of Nuclear Reaction Data Centers (see www-nds.iaea.org/nrdc/). Data available online (e.g., at www-nds.iaea.org/exfor/).

  • 图 1  40Ca中子诱发核反应计算中, 光学势各项深度随能量的变化情况

    Figure 1.  Energy dependence of the DOM potential depths calculated for neutron induced reactions on 40Ca.

    图 2  40Ca的中子总截面计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Figure 2.  Comparison of the calculated total cross section for 40Ca with calculations using the K-D potential and measurements.

    图 3  40Ca的中子弹性散射角分布计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Figure 3.  Comparison of neutron elastic scattering angular distributions for 40Ca with calculations using the K-D potential and measurements.

    图 4  40Ca的质子弹性散射角分布计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Figure 4.  Comparison of proton elastic scattering angular distributions for 40Ca with calculations using the K-D potential and measurements.

    图 5  40Ca的中子弹性散射分析本领计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Figure 5.  Neutron elastic scattering analyzing powers for 40Ca compared with calculations using the K-D potential and the experimental data.

    图 6  40Ca的质子弹性散射分析本领计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Figure 6.  Proton elastic scattering analyzing powers for 40Ca compared with calculations using the K-D potential and the experimental data.

    图 7  40Ca的中子诱发核反应计算中DOM势实部体积分随能量的变化情况, 其中右边纵坐标度量$V_{\rm{HF}}$势和总的实部势, 左边纵坐标度量色散修正项

    Figure 7.  Energy dependencies of calculated real volume integrals of dispersive optical model potential for neutron induced reactions on 40Ca. Volume integrals of and total real potential by using right Y-axis, the volume integrals of dispersive terms by using left Y-axis.

    表 1  40Ca中子诱发核反应计算中的DOM势参数

    Table 1.  DOM potential parameters for nucleon induced reactions on 40Ca.

    Volume Surface Spin-orbit couple Coulomb
    Real $V_{0}$ = 85.93$\rm{MeV}$ $ V_{\rm{so} } $ = 6.1$\rm{MeV}$ $C_{\rm{Coul}}$ = 1.0$\rm{MeV}$
    potential $\lambda_{\rm{HF}}$ = 0.94$\rm{MeV}^{-1}$ Dispersive $ \lambda_{\rm{so} } $ = 0.004$\rm{MeV}^{-1}$
    $ C_{\rm{viso} } $ = 24$\rm{MeV}$
    Imaginary $A_{\rm{v}}$ = 13.36$\rm{MeV}$ $W_{0}$ = 17.67$\rm{MeV}$ $ W_{\rm{so} } $ = –3.1$\rm{MeV}$
    potential $B_{\rm{v}}$ = 86.63$\rm{MeV}$ $B_{\rm{s}}$ = 11.74$\rm{MeV}$ $ B_{\rm{so} } $ = 160$\rm{MeV}$
    $E_{\rm{a}}$ = 56$\rm{MeV}$ $C_{\rm{s}}$ = 0.02$\rm{MeV}^{-1}$
    α = 0.380$\rm{MeV}^{1/2}$ $ C_{\rm{wiso} } $ = 22$\rm{MeV}$
    Potential $r_{\rm{HF}}$ = 1.26$\rm{fm}$ $r_{\rm{s}}$ = 1.22$\rm{fm}$ $ r_{\rm{so} } $ = 1.35$\rm{fm}$ $r_{\rm{c}}$ = 1.03$\rm{fm}$
    geometry $a_{\rm{HF}}$ = 0.622$\rm{fm}$ $a_{\rm{s}}$ = 0.502$\rm{fm}$ $ a_{\rm{so} } $ = 0.682$\rm{fm}$ $a_{\rm{c}}$ = 0.252$\rm{fm}$
    $r_{\rm{v}}$ = 1.34$\rm{fm}$
    $a_{\rm{v}}$ = 0.675$\rm{fm}$
    DownLoad: CSV
  • [1]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [2]

    Mahaux C, Sartor R 1986 Phys. Rev. Lett. 57 3015Google Scholar

    [3]

    Morillon B, Romain P 2004 Phys. Rev. C 70 014601Google Scholar

    [4]

    Morillon B, Romain P 2006 Phys. Rev. C 74 014601Google Scholar

    [5]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S 2005 Phys. Rev. C 72 024604Google Scholar

    [6]

    Capote R, Soukhovitskiĩ E Sh, Quesada J M, Chiba S 2005 Phys. Rev. C 72 064610Google Scholar

    [7]

    Hao L J, Sun W L, Soukhovitskiĩ E Sh 2008 J. Phys. G: Nucl. Part. Phys. 35 095103Google Scholar

    [8]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin G, Soukhovitskii E Sh, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [9]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [10]

    Dickhoff W H, Charity R J 2019 Prog. Part. Nucl. Phys. 105 252Google Scholar

    [11]

    Zhao X N, Sun W L, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M, Capote R 2019 J. Phys. G: Nucl. Part. Phys. 46 055103Google Scholar

    [12]

    Zhao X N, Sun W L, Capote R, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [13]

    Zhao X N, Du W Q, Capote R, Soukhovitskiĩ E Sh 2023 Phys. Rev. C 107 064606Google Scholar

    [14]

    Perey F, Buck B 1962 Nucl. Phys. 32 353Google Scholar

    [15]

    Brown G E, Rho M 1981 Nucl. Phys. A 372 397Google Scholar

    [16]

    Delaroche J P, Wang Y, Rapaport J 1989 Phys. Rev. C 39 391Google Scholar

    [17]

    Molina A, Capote R, Quesada J M, Lozano M 2002 Phys. Rev. C 65 034616Google Scholar

    [18]

    Mahaux C, Sartor R 1991 Nucl. Phys. A 528 253Google Scholar

    [19]

    Lane A M 1962 Phys. Rev. Lett. 8 171Google Scholar

    [20]

    Lane A M 1962 Nucl. Phys. 35 676Google Scholar

    [21]

    Sukhovitskiĩ E Sh, Lee Y O, Chang J, Chiba S, Iwamoto O 2000 Phys. Rev. C 62 044605Google Scholar

    [22]

    EXchange FORmat database (EXFOR) is maintained by the Network of Nuclear Reaction Data Centers (see www-nds.iaea.org/nrdc/). Data available online (e.g., at www-nds.iaea.org/exfor/).

  • [1] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [2] Ma Yin-Qun, Ma Zhong-Yu. Microscopic optical potentials in 6Li scattering by nuclei. Acta Physica Sinica, 2008, 57(1): 74-81. doi: 10.7498/aps.57.74
    [3] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [4] Gu Yun-Ting, Feng Lu-Yan, Tao Jun-Quan, Huang Tian-Heng, Luo Chun, Ma Wei-Xing. Study of 46.8MeV p+12C inelastic scattering. Acta Physica Sinica, 2005, 54(10): 4666-4668. doi: 10.7498/aps.54.4666
    [5] ZHU FEI-RAN, JIANG WEI-LIN, XU TIAN-BING, YIN SHI-DUAN. MeV PROTON ELASTIC BACKSCATTERING ANALYSIS OF SiNx/Si AND SiOx/Si FILMS. Acta Physica Sinica, 1992, 41(12): 2049-2054. doi: 10.7498/aps.41.2049
    [6] RUAN JING-HUI, CHENG ZHI-XU, CHEN GUI-YING. INELASTIC SCATTERING SPECTRA OF THERMAL NEUTRONS BY ALUMINIUM HYDRIDE (AlH3)n. Acta Physica Sinica, 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [7] CHEN GUI-YING, CHENG ZHI-XU, WU XIAN-NAN, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING OF PALLADIUM HYDRIDES (PdHx). Acta Physica Sinica, 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [8] ZHANG YU-SHUN, LI YANG-GUO. ELASTIC AND INELASTIC PROTON-NUCLEAR SCATTERING AT HIGH ENERGY. Acta Physica Sinica, 1977, 26(5): 449-454. doi: 10.7498/aps.26.449
    [9] CAO CHANG-QI, QIN DAN-HUA. DEEP INELASTIC ELECTRON-PROTON SCATTERING (Ⅱ). Acta Physica Sinica, 1976, 25(4): 308-315. doi: 10.7498/aps.25.308
    [10] CAO CHANG-QI, QIN DAN-HUA. DEEP INELASTIC ELECTRON-PROTON SCATTERING (Ⅰ). Acta Physica Sinica, 1976, 25(3): 197-214. doi: 10.7498/aps.25.197
    [11] . Acta Physica Sinica, 1975, 24(6): 458-460. doi: 10.7498/aps.24.458
    [12] . Acta Physica Sinica, 1975, 24(2): 115-123. doi: 10.7498/aps.24.115
    [13] HU NINO. ON THE DISPERSION-RELATION TREATMENT OF THE LOW ENERGY PION-NUCLEON SCATTERING. Acta Physica Sinica, 1966, 22(3): 325-333. doi: 10.7498/aps.22.325
    [14] LIU BING-TUNG, HO KUO-CHU. THE STUDY OF TWO-NUCLEON POTENTIAL IN NUCLEI BY MEANS OF INELASTIC SCATTERING. Acta Physica Sinica, 1966, 22(5): 569-579. doi: 10.7498/aps.22.569
    [15] CHANG SHIH-CHUN. THE SECOND RESONANCE IN π-N ELASTIC SCATTERING. Acta Physica Sinica, 1964, 20(3): 216-226. doi: 10.7498/aps.20.216
    [16] GUAN HONG. LOW-ENERGY PION-NUCLEON SCATTERING. Acta Physica Sinica, 1964, 20(3): 207-215. doi: 10.7498/aps.20.207
    [17] FANG LI-ZHI, GU SHI-JIE. INELASTIC SCATTERING OF NEUTRONS IN FERROMAGNETICS WITH IMPERFECTIONS. Acta Physica Sinica, 1963, 19(10): 673-681. doi: 10.7498/aps.19.673
    [18] . Acta Physica Sinica, 1962, 18(6): 321-324. doi: 10.7498/aps.18.321
    [19] LO LIAU-FU, SHUE SIN. ON K+-N ELASTIC SCATTERING. Acta Physica Sinica, 1962, 18(6): 291-297. doi: 10.7498/aps.18.291
    [20] SHIH HSU-DAN, LO LEO-FU, SHU SIN, HAUNG NIEN-NING. POLARIZATION IN THE NUCLEON-DEUTRON SCATTERING. Acta Physica Sinica, 1960, 16(6): 324-330. doi: 10.7498/aps.16.324
Metrics
  • Abstract views:  2219
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2023
  • Accepted Date:  18 July 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回