Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controllable microwave photon transmissions in microwave quantum networks by elastic scattering

MA Jun OUYANG Penghui CHAI Yaqiang JIANG Qingquan HE Qing WEI Lianfu

Citation:

Controllable microwave photon transmissions in microwave quantum networks by elastic scattering

MA Jun, OUYANG Penghui, CHAI Yaqiang, JIANG Qingquan, HE Qing, WEI Lianfu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Elastic scattering is one of the useful approach to control the transmission behavior of microwave photons transporting in microwave quantum networks without energy consumption. Therefore, it has practical significance for the development of microwave quantum devices and the construction of multi-node microwave quantum networks. In view of the existence of the same device, specifically the transmission line embedded by a single Josephson junction, could be described by different circuit models (the series and parallel ones), in this paper we first theoretically analyze the transporting feature for the microwave photons being scattered by the different elastic scattering model, described by either the series or the parallel embedding models, generated by a single LC loop and a nonlinear Josephson junction device, respectively. The classical microwave transport theory predicts that, the series LC loop and the parallel LC loop lead to different microwave photon elastic scattering behaviors, i.e., the series LC circuit yields the resonant reflection and the parallel LC circuit leading alternatively to the resonant transmission. Recently, the transport properties of microwave photons scattered by a Josephson junction embedded in a transmission line had been discussed, and the results suggested that the Josephson junction embedded in the transmission line should be described by a series embedding circuit, which implies the resonant reflection. We argue here that, if the Josephson junction is embedded in parallel in the transmission line, the elastically scattered microwave photons should be transmitted by resonant transmission. In order to test which of the above two different embedding circuit models, yielding the completely different elastic scattering behaviors, is physically correct, we then fabricated such a device, i.e., a single Joseph junction device embedded in a transmission line is prepared, and measured its elastic scattering transmission coefficient at extremely low temperature. The results are consistent with the expected effects of the parallel embedding circuit model, but conflicted with the behaviors predicted by the series embedding circuit model in the literature. Based on the above theoretical and experimental analysis on the elastic scattering of a single Josephson junction device, we further propose a scheme to control the elastic scattering behavior of microwave photons by modulating a DC superconducting quantum interference device with a bypass current, which could be applied to the construction of a microwave quantum network based on elastic scattering node controls.
  • 图 1  (a) 单节点的微波光子弹性散射等效电路模型, 黑色框代表散射体; (b) 传统的微波散射的二端口网络模型

    Figure 1.  (a) The single-node microwave photonic elastic scattering equivalent circuit model, with the black box representing the scatterer; (b) The usual microwave scattering two-port networks model.

    图 2  (a) 无限长传输线中串联嵌入线性LC回路的等效电路模型示意图; (b) 串联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之相对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $

    Figure 2.  (a) Schematic diagram of the equivalent circuit model of a linear LC loop embedded in series in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the series-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $

    图 3  (a) 无限长传输线中并联嵌入LC回路等效电路模型示意图; (b) 并联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $

    Figure 3.  (a) Schematic diagram of the equivalent circuit model of a linear LC loop parallelly embedded in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the parallel-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $.

    图 4  单个约瑟夫森结作为散射体时不同嵌入等效电路模型示意图 (a) 串联嵌入; (b) 并联嵌入

    Figure 4.  Schematic diagrams of different embedded equivalent circuit models of a single Josephson junction as the scatterer: (a) Series embedding; (b) Parallel embedding.

    图 5  不同嵌入模型下约瑟夫森结的微波光子弹性散射透射谱

    Figure 5.  The transmission spectra of microwave photons elastically scattered by a Josephson junction with different embedded models.

    图 6  约瑟夫森结嵌入共面波导传输线的器件实物图[25] (a) 器件电路实物图, 红框处为约瑟夫森结; (b) 红框处放大的显微镜图像; (c) 橙框处放大的扫描电子显微镜图像, 结区面积为1.26 μm2

    Figure 6.  The physical image of the device with a Josephson junction embedded in a coplanar waveguide transmission[25]: (a) The physical image of the device circuit, with the Josephson junction marked by the red box; (b) The magnified microscopic image of the red box area; (c) The magnified scanning electron microscope image of the orange box area, where the junction area is 1.26 μm2.

    图 7  嵌入共面波导传输线中的单个约瑟夫森结对微波光子的散射特性[25] 插图(a)中红色代表实验测量的约瑟夫森结对微波光子形成的透射谱, 即黑框处放大图像, 而黑色代表约瑟夫森结并联嵌入模型下的理论分析结果; 插图(b)为插图(a)所对应的相移谱

    Figure 7.  The scattering characteristics of microwave photons by a single Josephson junction embedded in a coplanar waveguide transmission line[25]. In inset (a), the red curve represents the experimentally measured transmission spectrum of microwave photons formed by the Josephson junction. Specifically, it is the magnified image within the black box. The black curve, on the other hand, represents the theoretical analysis results based on the model where the Josephson junction is embedded in parallel. Inset (b) shows the corresponding phase - shift spectrum of inset (a).

    图 8  无限长传输线中并联嵌入DC-SQUID等效电路模型示意图, 紫色为磁通偏置线

    Figure 8.  Schematic diagram of the equivalent circuit model of DC-SQUID parallelly embedded in an infinitely long transmission line, wherein the purple refers to its flux bias.

    图 9  不同磁通偏置下, 并联嵌入DC-SQUID对微波光子弹性散射的透射谱及其相移谱. 相关参数设置为: $ Z_0/ $$ Z_{J_0}=10 $ (a) 透射谱; (b) 透射相移谱

    Figure 9.  The transmission spectra and phase shift spectra of microwave photons elastically scattered by the parallel-embedded DC-SQUID under different magnetic flux biases. The relevant parameters are set as: $ Z_0/Z_{J_0}=10 $. (a) Transmission spectrum; (b) Transmission phase shift spectrum.

  • [1]

    Wei S, Jing B, Zhang X, Liao J, Yuan C, Fan B, Lyu C, Zhou D, Wang Y, Deng G, Song H, Oblak D, Guo G, Zhou Q 2022 Laser Photonics Rev. 16 2100219Google Scholar

    [2]

    Wallquist M, Shumeiko V S, Wendin G 2006 Phys. Rev. B 74 224506Google Scholar

    [3]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [4]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New J. Phys. 21 043011Google Scholar

    [5]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [6]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [7]

    Tseng P, Chen L, Shiu J S, Chen Y 2024 Phys. Rev. A 109 043716Google Scholar

    [8]

    Ma S, Zhu C, Quan D, Nie M 2022 Entropy 24 794Google Scholar

    [9]

    Zueco D, Mazo J J, Solano E, García-Ripoll J J 2012 Phys. Rev. B 86 024503Google Scholar

    [10]

    He S, He Q, Wei L 2021 Opt. Express 29 43148Google Scholar

    [11]

    Bi Y, Huang L, Li X, Wang Y 2021 Front. Optoelectron. 14 154Google Scholar

    [12]

    Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y, Tsai J S 2010 Science 327 840Google Scholar

    [13]

    Jain V, Kurilovich V D, Dahmani Y D, Lei C U, Mason D, Yoon T, Rakich P T, Glazman L I, Schoelkopf R J 2023 Phys. Rev. Appl. 20 014018Google Scholar

    [14]

    Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104 193601Google Scholar

    [15]

    Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L, Sidorenko A S 2017 Beilstein J. Nanotechnol. 8 2689Google Scholar

    [16]

    Feldhoff F, Toepfer H 2021 IEEE Trans. Appl. Supercond. 31 1

    [17]

    Rabbi K, Athukorala L, Panagamuwa C, Vardaxoglou J C, Budimir D 2013 Microw. Opt. Technol. Lett. 55 1331Google Scholar

    [18]

    Taris T, Kraimia H, Belot D, Deval Y 2015 J. Low Power Electron. Appl. 5 274Google Scholar

    [19]

    Bourassa J, Beaudoin F, Gambetta J M, Blais A 2012 Phys. Rev. A 86 013814Google Scholar

    [20]

    Clemente-Gallardo J, Scherpen J 2003 IEEE Trans. Circuits Syst. 50 1359Google Scholar

    [21]

    Aldrigo M, Zappelli L, Cismaru A, Dragoman M, Iordanescu S, Mladenovic D, Parvulescu C, Joseph C H, Mencarelli D, Pierantoni L, Russo P 2023 J. Comput. Electron. 22 1031Google Scholar

    [22]

    Li J, Zhu X, Shen C, Peng X, Cummer S A 2019 Phys. Rev. B 100 144311Google Scholar

    [23]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [24]

    Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf R J, Devoret M H 2018 Phys. Rev. Lett. 120 200501Google Scholar

    [25]

    Ouyang P, He S, Wang Y, Chai Y, He J, Chang H, Wei L 2024 Phys. Rev. Res. 6 013236Google Scholar

    [26]

    Erickson R P, Pappas D P 2017 Phys. Rev. B 95 104506Google Scholar

    [27]

    Zueco D, Fernández-Juez C, Yago J, Naether U, Peropadre B, García-Ripoll J J, Mazo J J 2013 Supercond. Sci. Technol. 26 074006Google Scholar

    [28]

    韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福 2021 物理学报 70 170304Google Scholar

    Han J, Ouyang P, Li E, Wang Y, Wei L 2021 Acta Phys. Sin. 70 170304Google Scholar

    [29]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D 2021 Acta Phys. Sin. 70 018502Google Scholar

    [30]

    Castro C, Araújo M R, Cruz C 2021 Phys. Scr. 96 105101Google Scholar

    [31]

    Hua M, Tao M, Deng F 2016 Sci. Rep. 6 22037Google Scholar

    [32]

    Leung N, Lu Y, Chakram S, Naik R K, Earnest N, Ma R, Jacobs K, Cleland A N, Schuster D I 2019 npj Quantum Inf. 5 18Google Scholar

  • [1] YANG Liangliang, HE Kaiyong, DAI Genting, CHANG Jinlin, JIANG Linpan, SUN Zhenyuan, LIU Jianshe, CHEN Wei. Numerical Analysis of Dynamical Behavior in Josephson Junctions with Non-Sinusoidal Current-Phase Relations. Acta Physica Sinica, doi: 10.7498/aps.74.20250723
    [2] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.71.20220820
    [3] Liang Tian-Tian, Zhang Guo-Feng, Wu Wen-Tao, Ni Zhi, Wang Yong-Liang, Ying Li-Liang, Wu Jun, Rong Liang-Liang, Peng Wei, Gao Bo. Fabrication and experimental analysis of series superconducting quantum inteference device array. Acta Physica Sinica, doi: 10.7498/aps.70.20210467
    [4] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, doi: 10.7498/aps.70.20201483
    [5] Zheng Dong-Ning. Superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.70.20202131
    [6] Han Jin-Ge, Ouyang Peng-Hui, Li En-Ping, Wang Yi-Wen, Wei Lian-Fu. Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions. Acta Physica Sinica, doi: 10.7498/aps.70.20210393
    [7] Xu Jia-Hao, Wang Yun-Xin, Wang Da-Yong, Zhou Tao, Yang Feng, Zhong Xin, Zhang Hong-Biao, Yang Deng-Cai. Microwave photonic frequency up-converter with LO doubling based on carrier suppression single-sideband modulation. Acta Physica Sinica, doi: 10.7498/aps.68.20190266
    [8] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, doi: 10.7498/aps.68.20190483
    [9] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, doi: 10.7498/aps.68.20190167
    [10] Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua. Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.65.017401
    [11] Chen Zhao, He Gen-Fang, Zhang Qing-Ya, Liu Jian-She, Li Tie-Fu, Chen Wei. Fabrication and characterization of the superconducting quantum interference device amplifier with Washer type input coil. Acta Physica Sinica, doi: 10.7498/aps.64.128501
    [12] Cao Wen-Hui, Li Jin-Jin, Zhong Qing, Guo Xiao-Wei, He Qing, Chi Zong-Tao. Fabrication and characterization of single Nb/NbxSi1-x/Nb Josephson junction for voltage standard. Acta Physica Sinica, doi: 10.7498/aps.61.170304
    [13] Zhang Shu-Lin, Liu Yang-Bo, Zeng Jia, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device. Acta Physica Sinica, doi: 10.7498/aps.61.020701
    [14] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Analytical analysis of periodic solution and its stability in Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.60.030308
    [15] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, doi: 10.7498/aps.59.1282
    [16] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, doi: 10.7498/aps.59.5755
    [17] Ma Yin-Qun, Ma Zhong-Yu. Microscopic optical potentials in 6Li scattering by nuclei. Acta Physica Sinica, doi: 10.7498/aps.57.74
    [18] Cui Da-Jian, Lin De-Hua, Yu Hai-Feng, Peng Zhi-Hui, Zhu Xiao-Bo, Zheng Dong-Ning, Jing Xiu-Nian, Lü Li, Zhao Shi-Ping. Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction. Acta Physica Sinica, doi: 10.7498/aps.57.5933
    [19] Xiao Yu-Fei, Wang Deng-Long, Wang Feng-Jiao, Yan Xiao-Hong. Dynamical properties of an asymmetric Josephson junction in Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.55.547
    [20] WANG ZHEN-YU, LIAO HONG-YIN, ZHOU SHI-PING. STUDIES OF THE DC BIASED JOSEPHSON JUNCTION COUPLED TO A RESONANT TANK. Acta Physica Sinica, doi: 10.7498/aps.50.1996
Metrics
  • Abstract views:  431
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Available Online:  14 June 2025
  • /

    返回文章
    返回