Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions

Han Jin-Ge Ouyang Peng-Hui Li En-Ping Wang Yi-Wen Wei Lian-Fu

Citation:

Experimentally estimating of physical parameters of the fabricated superconducting Josephson junctions

Han Jin-Ge, Ouyang Peng-Hui, Li En-Ping, Wang Yi-Wen, Wei Lian-Fu
PDF
HTML
Get Citation
  • Superconducting Josephson junctions are the key devices for superconducting quantum computation and microwave single photon detection. It is important to fabricate the Josephson junctions with designable parameters. Different from the typical methods to calibrate the parameters of the Josephson junctions,, e.g., by using the microwave drivings and measuring the ratio of hysteresis current to critical one, in this paper we achieve the calibrations with the low frequency current biases. First, we measure the I-V characteristic curves of the fabricated Al/AlOx/Al junctions. Second, we measure the statistical distributions of the jump currents of the Josephson junction samples driven by the low frequency (@71.3 Hz) biased currents at an extremely low temperature of 50 mK. These two sets of experimental data are utilized to estimate the typical parameters of the Josephson junction, i.e., junction capacitance, critical current, and the damping coefficient, which are difficult to be directly measured in the usual experiments. The critical current and capacitance of the Josephson junction are estimated by fitting the statistical distribution of the measured jump currents with the relevant theoretical model of the "particle" escape from the potential driven by the thermal excitations and quantum tunnelings. With the calibrated critical current of the junction, the relation between $I/I_{\rm{c}}$ and ${\rm{d}}\varphi/{\rm{d}}\tau,\,\tau=\omega_{\rm{c}}t$ (with $\omega_{\rm{c}}$ being the plasmon frequency) is obtained from the measured $I\text-V$ curve. Using the standard resistively capacitance shunted junction model to fit such a relation, the damping coefficient of the junction can be estimated. With the estimated critical current, capacitance, and damping coefficient, the resistance $R_n$ of the junction at the working temperature is calibrated consequently. It is shown that our estimated results are in good agreement with that predicted by the famous Ambgaokar-Baratoff formula. Physically, the method demonstrated here possesses two advantages. First, it is relatively insensitive to the noise during the measurement of the junction's I-V characteristic curve, compared with the usual method to calibrate damping coefficient by measuring the ratio of hysteresis current to critical current. Second, only the low frequency driving is required to measure the jump current of the junction for estimating the damping coefficient. The microwave driving is not necessary. Hopefully, the present work is useful for the on-demand designs of the Josephson junctions for various applications.
      Corresponding author: Wei Lian-Fu, lfwei@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974290, 61871333)
    [1]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, Malley P O, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [2]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [3]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z J, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff B, Guerin K, Habegger S, Harrigan M, Hartmann M, Ho A, Hoffmann M, Huang T, Humble T, Isakov S, Jeffrey E, Zhang J, Kafri D, Kechedzhi K, Kelly J, Klimov P, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J, Quintana C, Rieffel E, Roushan P, Rubin N, Sank D, Satzinger K, Smelyanskiy V, Sung K, Trevithick M, Vainsencher A, Villalonga B, Yao T J, Yeh P, Zalcman A, Neven H, Martinis J 2019 Nature 574 505Google Scholar

    [4]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [5]

    Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R. Phys. 17 756Google Scholar

    [6]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 370 1460

    [7]

    张裕恒, 李玉芝 2009 超导物理 (卷3) (合肥: 中国科学技术大学出版社) 第342−484页

    Zhang Y H, Li Y Z 2009 Superconductor Physics (Vol. 3) (Hefei: China University of science and Technology Press) pp342−484 (in Chinese)

    [8]

    郑东宁 2021 物理学报 70 018502

    Zheng D L 2021 Acta Phys. Sin. 70 018502

    [9]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [10]

    Sun G Z, Wang Y W, Cao J Y, Chen J, Ji Z M, Kang L, Xu W W, Yu Y, Han S Y, Wu P H 2008 Phys. Rev. B 77 104531Google Scholar

    [11]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [12]

    Makhlin Y, Sch?n G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 17

    [14]

    崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕力, 赵士平 2008 物理学报 09 5933Google Scholar

    Cui D J, Lin D H, Yu H F, Peng Z H, Zhu X B, Zheng D N, Jing X N, Lu L, Zhao S P 2008 Acta Phys. Sin. 09 5933Google Scholar

    [15]

    Kramers H A 1940 Physica 7 284Google Scholar

    [16]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [17]

    Trees B R, Saranathan V, Stroud D 2005 Phys. Rev. E 71 016215Google Scholar

    [18]

    陈伟 2019 博士学位论文 (南京: 南京大学)

    Chen W 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [19]

    曹俊宇, 孙国柱, 王轶文, 陈健, 吴培亨 2007 低温物理学报 03 196

    Cao J Y, Sun G Z, Wang Y W, Chen J, Wu P H 2007 Chin. J. Low Temp. 2007 03 196 (in Chinese)

    [20]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

  • 图 1  电流偏置下的约瑟夫森结势能曲线

    Figure 1.  Potential of a current-biased Josephson junction.

    图 2  约瑟夫森结制备流程图

    Figure 2.  Preparation process of a Josephson junction.

    图 3  约瑟夫森结样品

    Figure 3.  Josephson junction sample.

    图 4  约瑟夫森结I-V特性曲线

    Figure 4.  Measured I-V characteristic curve of the fabricated Josephson junction.

    图 5  约瑟夫森结跳变电流实验测量的时序图

    Figure 5.  Time sequence diagram for the junction jump current measurements.

    图 6  约瑟夫森结跳变电流及其次数统计

    Figure 6.  Josephson junction jump currents and their statistical distributions.

    图 7  结跳变电流的归一化统计分布: 理论拟合(红实线)与实验数据(点状线)

    Figure 7.  Statistical distributions of the junction jump currents: theoretical simulations (red soild line), and measurement data (dot line).

    图 8  约瑟夫森结的等效I-V曲线

    Figure 8.  Effective I-V curve of the measured Josephson junction

    图 9  斜率K随阻尼参数变化$\beta_{\rm c}$关系

    Figure 9.  Relationship between the parameters $\beta_{\rm c}$ and K.

    表 1  不同参数取值对实验数据拟合的偏差度分析

    Table 1.  Deviations from the data simulated by using the different theoretical parameters.

    $I_{\rm c}/(10^{-7}{\rm A})$ C/fF 峰值位置
    偏差(误差/
    实验值)
    峰值高度
    偏差(误差/
    实验值)
    半高宽偏差
    (误差/实验值)
    $ 5.56 $ $ 23.3 $ 0.06% 9.75% 3.52%
    $ 5.57 $ $ 23.3 $ 0.27% 9.75% 3.52%
    $ 5.55 $ $ 23.3 $ 0.15% 9.75% 3.52%
    $ 5.56 $ $ 23.4 $ 0.17% 9.74% 3.53%
    $ 5.56 $ $ 23.2 $ 0.31% 9.76% 3.52%
    DownLoad: CSV
  • [1]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, Malley P O, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar

    [2]

    李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任浩, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰 2021 物理学报 70 018501Google Scholar

    Li C G, Wang J, Wu Y, Wang X, Sun L, Dong H, Gao B, Li H, You L X, Lin Z R, Ren H, Li J, Zhang W, He Q, Wang Y W, Wei L F, Sun H C, Wang H B, Li J J, Qu J F 2021 Acta Phys. Sin. 70 018501Google Scholar

    [3]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J, Barends R, Biswas R, Boixo S, Brandao F, Buell D, Burkett B, Chen Y, Chen Z J, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff B, Guerin K, Habegger S, Harrigan M, Hartmann M, Ho A, Hoffmann M, Huang T, Humble T, Isakov S, Jeffrey E, Zhang J, Kafri D, Kechedzhi K, Kelly J, Klimov P, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean J, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu M Y, Ostby E, Petukhov A, Platt J, Quintana C, Rieffel E, Roushan P, Rubin N, Sank D, Satzinger K, Smelyanskiy V, Sung K, Trevithick M, Vainsencher A, Villalonga B, Yao T J, Yeh P, Zalcman A, Neven H, Martinis J 2019 Nature 574 505Google Scholar

    [4]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [5]

    Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R. Phys. 17 756Google Scholar

    [6]

    Chen Y F, Hover D, Sendelbach S, Maurer L, Merkel S T, Pritchett E J, Wilhelm F K, McDermott R 2011 Phys. Rev. Lett. 370 1460

    [7]

    张裕恒, 李玉芝 2009 超导物理 (卷3) (合肥: 中国科学技术大学出版社) 第342−484页

    Zhang Y H, Li Y Z 2009 Superconductor Physics (Vol. 3) (Hefei: China University of science and Technology Press) pp342−484 (in Chinese)

    [8]

    郑东宁 2021 物理学报 70 018502

    Zheng D L 2021 Acta Phys. Sin. 70 018502

    [9]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [10]

    Sun G Z, Wang Y W, Cao J Y, Chen J, Ji Z M, Kang L, Xu W W, Yu Y, Han S Y, Wu P H 2008 Phys. Rev. B 77 104531Google Scholar

    [11]

    Stewart W C 1968 Appl. Phys. Lett. 12 277Google Scholar

    [12]

    Makhlin Y, Sch?n G, Shnirman A 2001 Rev. Mod. Phys. 73 357Google Scholar

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 17

    [14]

    崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕力, 赵士平 2008 物理学报 09 5933Google Scholar

    Cui D J, Lin D H, Yu H F, Peng Z H, Zhu X B, Zheng D N, Jing X N, Lu L, Zhao S P 2008 Acta Phys. Sin. 09 5933Google Scholar

    [15]

    Kramers H A 1940 Physica 7 284Google Scholar

    [16]

    Caldeira A O, Leggett A J 1981 Phys. Rev. Lett. 46 211Google Scholar

    [17]

    Trees B R, Saranathan V, Stroud D 2005 Phys. Rev. E 71 016215Google Scholar

    [18]

    陈伟 2019 博士学位论文 (南京: 南京大学)

    Chen W 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [19]

    曹俊宇, 孙国柱, 王轶文, 陈健, 吴培亨 2007 低温物理学报 03 196

    Cao J Y, Sun G Z, Wang Y W, Chen J, Wu P H 2007 Chin. J. Low Temp. 2007 03 196 (in Chinese)

    [20]

    Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 10 486Google Scholar

  • [1] Zhang Ding, Zhu Yu-Ying, Wang Heng, Xue Qi-Kun. Josephson effect in twisted cuprates. Acta Physica Sinica, 2023, 72(23): 237402. doi: 10.7498/aps.72.20231815
    [2] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [3] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [4] Wang Lan-Ruo, Zhong Yuan, Li Jin-Jin, Qu Ji-Feng, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Zhou Zhi-Qiang, Fu Kai, Shi Yong. Development of quantum voltage noise source chip for precision measurement of Boltzmann constant. Acta Physica Sinica, 2018, 67(10): 108501. doi: 10.7498/aps.67.20172643
    [5] Wang Song, Wang Xing-Yun, Zhou Zhang-Yu, Yang Fa-Shun, Yang Jian, Fu Xing-Hua. Preparation, microstructure of B film and its applications in MgB2 superconducting Josephson junction. Acta Physica Sinica, 2016, 65(1): 017401. doi: 10.7498/aps.65.017401
    [6] Chen Zhao, He Gen-Fang, Zhang Qing-Ya, Liu Jian-She, Li Tie-Fu, Chen Wei. Fabrication and characterization of the superconducting quantum interference device amplifier with Washer type input coil. Acta Physica Sinica, 2015, 64(12): 128501. doi: 10.7498/aps.64.128501
    [7] Cao Wen-Hui, Li Jin-Jin, Zhong Qing, Guo Xiao-Wei, He Qing, Chi Zong-Tao. Fabrication and characterization of single Nb/NbxSi1-x/Nb Josephson junction for voltage standard. Acta Physica Sinica, 2012, 61(17): 170304. doi: 10.7498/aps.61.170304
    [8] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Hopf bifurcation and chaotification of Josephson junction with linear delayed feedback. Acta Physica Sinica, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [9] Zhang Li-Sen, Cai Li, Feng Chao-Wen. Analytical analysis of periodic solution and its stability in Josephson junction. Acta Physica Sinica, 2011, 60(3): 030308. doi: 10.7498/aps.60.030308
    [10] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [11] Yue Hong-Wei, Wang Zheng, Fan Bin, Song Feng-Bin, You Feng, Zhao Xin-Jie, He Ming, Fang Lan, Yan Shao-Lin. Millimeter wavelength coherent emission from high temperature superconducting bicrystal Josephson junction array. Acta Physica Sinica, 2010, 59(8): 5755-5758. doi: 10.7498/aps.59.5755
    [12] Lei You-Ming, Xu Wei. Chaos control in the Josephson junction with a resonant harmonic excitation. Acta Physica Sinica, 2008, 57(6): 3342-3352. doi: 10.7498/aps.57.3342
    [13] Cui Da-Jian, Lin De-Hua, Yu Hai-Feng, Peng Zhi-Hui, Zhu Xiao-Bo, Zheng Dong-Ning, Jing Xiu-Nian, Lü Li, Zhao Shi-Ping. Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction. Acta Physica Sinica, 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [14] Wu Bing-Guo, Zhao Zhi-Gang, You Yu-Xin, Liu Mei. Phase transition and vortex noise spectrum in two-dimensional Josephson-junction array. Acta Physica Sinica, 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [15] Zhou Tie-Ge, Song Feng-Bin, Zuo Tao, Gu Jing, Xia Hou-Hai, Hu Ya-Ting, Zhao Xin-Jie, Fang Lan, Yan Shao-Lin. The model of capacitively coupled intrinsic Josephson junction array and its chaotic behavior. Acta Physica Sinica, 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [16] Li Zhao-Xin, Zou Jian, Cai Jin-Fang, Shao Bin. Entanglement between charge qubit and quantized field. Acta Physica Sinica, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] Xiao Yu-Fei, Wang Deng-Long, Wang Feng-Jiao, Yan Xiao-Hong. Dynamical properties of an asymmetric Josephson junction in Bose-Einstein condensates. Acta Physica Sinica, 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [18] WANG ZHEN-YU, LIAO HONG-YIN, ZHOU SHI-PING. STUDIES OF THE DC BIASED JOSEPHSON JUNCTION COUPLED TO A RESONANT TANK. Acta Physica Sinica, 2001, 50(10): 1996-2000. doi: 10.7498/aps.50.1996
    [19] YAO XI-XIAN. ANALYTICAL SOLUTION OF RESISTIVELY SHUNTED JOSEPHSON JUNCTIONS. Acta Physica Sinica, 1978, 27(5): 559-568. doi: 10.7498/aps.27.559
    [20] LIU DONG, CAO SHU-LAN, SANG YA-NAN, WANG HUI-ZHI, LIU FU-SUI, WAN YU-ZHEN. EXPERIMENTAL AND THEORETICAL RESEARCH ON THE MICROWAVE INDUCED EFFECT IN JOSEPHSON TUNNEL JUNCTIONS. Acta Physica Sinica, 1976, 25(2): 97-104. doi: 10.7498/aps.25.97
Metrics
  • Abstract views:  6806
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  02 March 2021
  • Accepted Date:  23 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回