-
Josephson junction, as the core nonlinear element underpinning superconducting electronics, is characterized by its current-phase relation (CPR), which fundamentally determines the dynamical properties and functional capabilities of superconducting quantum devices.Traditional Josephson junctions typically exhibit a traditional sinusoidal CPR; however, the junctions characterized by non-sinusoidal CPR have recently attracted considerable attention due to their distinctive physical properties and promising quantum device applications. In this work, a numerical model tailored specifically for junctions exhibiting non-sinusoidal CPR is developed by integrating experimentally measured current–voltage (I-V) characteristics from Nb/Al-AlOx/Nb junctions into a resistively and capacitively shunted junction (RCSJ) framework. By leveraging this refined model, the influence of CPR skewness on Josephson junction dynamics is systematically investigated. Our results indicate that in underdamped junctions, the critical current significantly diminishes with the increase of CPR skewness, a behavior reminiscent of the adjustable critical currents typically observed in DC superconducting quantum interference devices (SQUIDs). Conversely, in overdamped junctions, the influence of CPR skewness on the I-V characteristics is found to be negligible. However, our numerical simulations under microwave irradiation indicate that nonsinusoidal CPRs readily promote the emergence of half-integer Shapiro steps in overdamped junctions, thereby establishing CPR skewness as a plausible microscopic origin for this phenomenon. In addition, the advanced design system (ADS) simulations is employed to model nonlinear resonators and DC SQUID circuits, offering a detailed investigation into how nonsinusoidal CPRs modulate the Josephson inductance and magnetic flux response. Our findings reveal that engineering the CPR of Josephson junctions provides substantial flexibility in the design of superconducting qubits, parametric amplifiers, and non-magnetic nonreciprocal devices. This tunability underscores significant opportunities for developing next-generation superconducting electronic components. The Josephson junctions with engineered CPR offer expanded functionality for superconducting quantum technologies. This study suggests that customized CPR can enhance control over the dynamical behavior of junctions, and promote the optimized designs of superconducting qubits, parametric amplifiers, and nonmagnetic nonreciprocal devices.
-
Keywords:
- Josephson junction /
- half-integer Shapiro steps /
- RCSJ model /
- DC-SQUID /
- superconducting electronics
-
图 2 欠阻尼结和过阻尼结约瑟夫森相位随时间的变化曲线 (a) 正弦型CPR约瑟夫森结相位随时间的变化曲线; (b) 正弦型CPR约瑟夫森结相位导数随时间的变化曲线; (c) 非正弦型CPR约瑟夫森结相位随时间的变化曲线($ T_{n} $ = 0.999); (d) 非正弦型CPR约瑟夫森结相位导数随时间的变化曲线($ T_{n} $ = 0.999)
Figure 2. The time evolution of the Josephson phase for underdamped and overdamped junctions (a) Time evolution of the phase for a sinusoidal CPR Josephson junction; (b) Time evolution of the phase derivative for a sinusoidal CPR Josephson junction; (c) Time evolution of the phase for a non-sinusoidal CPR Josephson junction ($ T_{n} $ = 0.999); (d) Time evolution of the phase derivative for a non-sinusoidal CPR Josephson junction ($ T_{n} $ = 0.999).
图 3 约瑟夫森结I-V曲线 (a) 约瑟夫森结电流相位关系曲线; (b) 约瑟夫森结中非线性电阻模拟欠阻尼结迟滞曲线, 非线性电阻的电流是准粒子电流不再是超流; (c) 基于RCSJ模型数值计算欠阻尼结在不同CPR时的I-V曲线, 这里只考虑超流的变化, 不同CPR带来不同的临界电流; (d) 基于RCSJ模型数值计算过阻尼结在不同CPR时的I-V曲线, 过阻尼结下不同CPR约瑟夫森结几乎相同的I-V曲线; (e) 实验测量的Nb/Al-AlOx/Nb约瑟夫分森结的I-V曲线, 这是欠阻尼结形式, 可见实际的约瑟夫森结具有超导电流以及迟滞的准粒子电流; (f) 对Nb/Al-AlOx/Nb约瑟夫分森结的临界电流多次扫描, 观察其临界电流稳定性
Figure 3. Josephson-junction I-V curves: (a) current–phase relation; (b) simulated underdamped hysteresis with quasiparticle current; (c) underdamped RCSJ, CPR-dependent $ I_{\mathrm{c}} $; (d) overdamped RCSJ, CPR-independent; (e) measured Nb/Al-AlOx/Nb underdamped hysteresis; (f) repeated $ I_{\mathrm{c}} $ sweeps demonstrating consistent, time-stable critical current
图 4 约瑟夫森结夏皮罗台阶数值计算结果 (a) 正弦CPR过阻尼结的夏皮罗台阶; (b) 正弦CPR欠阻尼结的夏皮罗台阶; (c) 非正弦CPR过阻尼结的夏皮罗台阶; (d) 非正弦CPR欠阻尼结的夏皮罗台阶
Figure 4. Numerically calculated Shapiro-step responses of Josephson junctions: (a) overdamped junction with sinusoidal CPR; (b) underdamped junction with sinusoidal CPR; (c) overdamped junction with non-sinusoidal CPR; (d) underdamped junction with non-sinusoidal CPR
图 5 正弦CPR约瑟夫森结微分电阻数值计算结果 (a) 过阻尼结微分电阻和相应夏皮罗台阶; (b) 欠阻尼结微分电阻和相应的夏皮罗台阶; (c) 过阻尼结微分电阻和偏置电路以及微波幅值的伪彩色三维图; (d) 欠阻尼结微分电阻和偏置电路以及微波幅值的伪彩色三维图
Figure 5. Numerically calculated differential resistance of Josephson junctions with sinusoidal CPR: (a) overdamped junction—differential resistance and corresponding Shapiro steps; (b) underdamped junction—differential resistance and corresponding Shapiro steps; (c) pseudocolor 3-D map of differential resistance versus bias current and microwave amplitude for the overdamped junction; (d) same 3-D map for the underdamped junction
图 6 非正弦CPR约瑟夫森结微分电阻和偏置电流以及微波幅值的伪彩三维图 (a) $ T_{n} $ = 0.01; (b) $ T_{n} $ = 0.5; (c) $ T_{n} $ = 0.9; (d) $ T_{n} $ = 0.999
Figure 6. Pseudocolor three-dimensional maps of differential resistance versus bias current and microwave amplitude for Josephson junctions with non-sinusoidal CPR: (a) $T_n = 0.01$; (b) $T_n = 0.5$; (c) $T_n = 0.9$; (d) $T_n = 0.999$
图 7 ADS中构建的基于约瑟夫森结的非线性谐振器S11参数随频率和结临界电流变化的伪彩色三维图 (a) 正弦型CPR约瑟夫森结; (b) $T_n = 0.01$; (c) $T_n = 0.9$; (d) $T_n = 0.999$
Figure 7. Pseudocolor three-dimensional maps of the $S_{11}$ parameter versus frequency and junction critical current for ADS-simulated Josephson-junction nonlinear resonators: (a) sinusoidal CPR; (b) $T_{n} = 0.01$; (c) $T_{n} = 0.9$; (d) $T_{n} = 0.999$
图 8 ADS中构建的DC-SQUID电压和偏置磁通以及DC-SQUID电流关系的伪彩色三维图 (a) 基于正弦CPR约瑟夫森结的DC-SQUID; (b) $T_n = 0.01$; (c) $T_n = 0.9$; (d) $T_n = 0.999$
Figure 8. Pseudocolor three-dimensional maps of DC-SQUID voltage versus bias flux and SQUID current from ADS simulations: (a) DC-SQUID with sinusoidal-CPR Josephson junctions; (b) $T_{n} = 0.01$; (c) $T_{n} = 0.9$; (d) $T_{n} = 0.999$
-
[1] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerreiro T, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jensen K, Jiang Z, Kelly J, Klimov P V, Knysh S, Korotkov A N, Kostritsa F, Landhuis D, Lindmark M, Lucero E, MacKay D, Martin O, McClean J R, McEwen M, Megrant A, Mi X, Morvan A, Neeley M, Neill C, Neven H, Niu M Y, O'Brien T, Ostby E, Petukhov A, Putterman H, Quintana C, Redd C, Rieffel E G, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Zhang Y, Zhong Y, Martinis J M 2019 Nature 574 505
Google Scholar
[2] Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo Q, Han L, Hong L, Huang T, Huo Y H, Li C, Li L, Li N, Li S, Li Y, Liang H, Lin J, Lin Z, Qian H, Rong H, Su H, Sun Y, Wang H, Wang S, Wu D, Xu Y, Yan Z, Yang F, Ye Y, Ying C, Yu J, Zha C, Zhai H, Zhang H, Zhang K, Zhang L, Zhang Y, Zhao P, Zhao Y, Zheng D, Zhou H, Zhu Q, Pan J W 2021 Phys. Rev. Lett. 127 180501
Google Scholar
[3] Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F, Fedorov K G, Wulf M, Goetz J, Wulschner F, Eder P, Fischer M, Haeberlein M, Schneider A, Wegscheider W, Menzel E P, Rotzinger H, Fowler A G, Wilhelm F K, Michler P 2021 npj Quantum Information 7 160
Google Scholar
[4] Yang L, He K, Dai G, Cheng M, Liu J, Chen W 2025 J. Supercond. Nov. Magn. 38 101
Google Scholar
[5] He K, Dai G, Yu Q, He Y, Zhao C, Liu J, Chen W 2023 Supercond. Sci. Technol. 36 045010
[6] Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30 068503
Google Scholar
[7] Choi G, Kim B, Choi J, Park K, Chong Y, Lee Y H 2023 IEEE Trans. Appl. Supercond. 33 1
[8] Qiu J Y, Grimsmo A, Peng K, Kannan B, Lienhard B, Sung Y, Krantz P, Bolkhovsky V, Calusine G, Kim D, Oliver W D 2023 Nat. Phys. 19 706
[9] Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307
Google Scholar
[10] Krylov G, Friedman E G 2021 IEEE Trans. Appl. Supercond. 31 1
[11] Clarke J, Braginski A I 2006 The SQUID Handbook: Applications of SQUIDs and SQUID Systems (John Wiley & Sons
[12] Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104 104414
Google Scholar
[13] Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121 177702
Google Scholar
[14] Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C, Van de Vondel J 2020 Phys. Rev. B 102 054507
Google Scholar
[15] Basset J, Kuzmanović M, Virtanen P, Heikkilä T T, Estève J, Gabelli J, Strunk C, Aprili M 2019 Phys. Rev. Res. 1 032009
Google Scholar
[16] Kalantre S S, Yu F, Wei M T, Watanabe K, Taniguchi T, Hernandez-Rivera M, Amet F, Williams J R 2020 Phys. Rev. Res. 2 023093
Google Scholar
[17] Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H, Tarucha S 2020 Phys. Rev. Res. 2 033435
Google Scholar
[18] Hart S, Cui Z, Ménard G, Deng M, Antipov A E, Lutchyn R M, Krogstrup P, Marcus C M, Moler K A 2019 Phys. Rev. B 100 064523
Google Scholar
[19] Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 13 1177
Google Scholar
[20] Nanda G, Aguilera-Servin J L, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L M K, Goswami S 2017 Nano Lett. 17 3396
Google Scholar
[21] English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Van Harlingen D J 2016 Phys. Rev. B 94 115435
Google Scholar
[22] Borzenets I V, Amet F, Ke C T, Draelos A W, Wei M T, Seredinski A, Watanabe K, Taniguchi T, Bomze Y, Yamamoto M, Finkelstein G 2016 Phys. Rev. Lett. 117 237002
Google Scholar
[23] Lee G H, Kim S, Jhi S H, Lee H J 2015 Nat. Commun. 6 6181
Google Scholar
[24] Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120 177704
Google Scholar
[25] Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121 097701
Google Scholar
[26] Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17 875
Google Scholar
[27] Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Molenkamp L W 2016 Nat. Commun. 7 10303
Google Scholar
[28] 侯延亮, 王翔, 孙晓培, 吕力 2023 物理学报 72 7
Hou Y L, Wang X, Sun X P, Lü L 2023 Acta Phys. Sin. 72 7
[29] Wiedenmann J 2018 Induced Topological Superconductivity in HgTe Based Nanostructures. Ph.D. Dissertation, Julius-Maximilians-Universität Würzburg. Chapter 12, p.73
[30] Bordin A, Liu C X, Dvir T, Zatelli F, Ten Haaf S L D, van Driel D, Wang G, Van Loo N, Zhang Y, Wolff J C, Kouwenhoven L P 2025 Nat. Nanotechnol. 1 In press
[31] Tanaka Y, Tamura S, Cayao J 2024 Prog. Theor. Exp. Phys. 2024 08C105
Google Scholar
[32] Zhu P, Feng S, Wang K, Xiang T, Trivedi N 2025 Nat. Commun. 16 2420
Google Scholar
[33] Yang L, He K, Dai G, Cheng M, Geng X, Jiang L, Chang J, Liu J, Chen W 2025 Phys. Lett. A 540 130401
Google Scholar
[34] Kamal A, Clarke J, Devoret M H 2011 Nat. Phys. 7 311
Google Scholar
[35] Kumar N P, Le D T, Pakkiam P, Stace T M, Fedorov A 2025 Phys. Rev. Res. 7 013075
Google Scholar
[36] Khaira N K 2022 Reconfigurable Cryogenic Microwave Devices Using Low Temperature Superconducting RF-SQUIDs. Ph.d. dissertation, University of Waterloo
[37] Ingla-Aynés J, Hou Y, Wang S, Chu E D, Mukhanov O A, Wei P, Moodera J S 2025 Nat. Electron. 1 In press
[38] Nadeem M, Fuhrer M S, Wang X 2023 Nat. Rev. Phys. 5 558
Google Scholar
[39] Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, Glezakou-Elbert O 2023 Phys. Rev. Lett. 131 027001
Google Scholar
[40] Castellani M, Medeiros O, Buzzi A, Foster R A, Colangelo M, Berggren K K 2024 Nat. Electron. 8 417
[41] Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P, Chen Y P 2020 npj Quantum Mater. 5 7
Google Scholar
[42] Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2023 Appl. Phys. Lett. 122 262601
Google Scholar
[43] Panghotra R, Raes B, de Souza Silva C C, Cools I, Van de Vondel J 2020 Commun. Phys. 3 169
Google Scholar
[44] Frattini N E, Vool U, Shankar S, Narla A, Sliwa K M, Devoret M H 2017 Appl. Phys. Lett. 110 222603
Google Scholar
[45] Ranadive A, Esposito M, Planat L, Bonet E, Naud C, Buisson O, Guichard W, Roch N 2022 Nat. Commun. 13 1737
Google Scholar
[46] Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64
Google Scholar
[47] Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6 296
Google Scholar
[48] Josephson B D 1962 Phys. Lett. 1 251
Google Scholar
[49] Prance J R, Thompson M D 2023 Appl. Phys. Lett. 122 222602
Metrics
- Abstract views: 351
- PDF Downloads: 29
- Cited By: 0