Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and performance evaluation of integrated superconducting quantum interference device chips for superconducting brain magnetometer systems

LI Jialin ZHANG Guofeng LI Siyao WANG Tianjun WEI Xueqi LI Hua GU Yuandong SUN Limin

Citation:

Design and performance evaluation of integrated superconducting quantum interference device chips for superconducting brain magnetometer systems

LI Jialin, ZHANG Guofeng, LI Siyao, WANG Tianjun, WEI Xueqi, LI Hua, GU Yuandong, SUN Limin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Superconducting quantum interference device (SQUID) is one of the most sensitive flux sensors and is critical in fields such as biomagnetism, low-field nuclear magnetic resonance (NMR), and geophysics. In this paper, an integrated magnetoencephalography (MEG) SQUID chip is investigated in detail, which consists of a magnetometer and two gradiometers. The SQUID and pick-up coils are fabricated on different-sized wafers. The SQUID is fabricated on a commercial silicon substrate using micro- and nano-fabrication processes, including thin-film growth, i-line stepper photolithography, and reactive ion etching (RIE). The sub-micron Josephson junction technology is employed to achieve a junction size of 0.7 μm×0.7 μm with a junction capacitance of only 0.05 pF. The pick-up coil is designed as a single-turn coil for a magnetometer and a planar first-order gradient coil for a gradient sensor. The MEG SQUID chips are tested in a well-shielded chamber with the helium-liquid temperature (4.2 K). Customized low-voltage noise readout circuit and source measure units are used to characterize the magnetic field white noise, current-voltage (I-V) characteristics, and voltage modulation amplitude of 171 SQUID channels. The results show that 81% of the SQUID chips exhibit the lower magnetic field noise (< 5 $ {\text{fT/}}\sqrt {{\text{HZ}}} $), and the high modulation amplitudes (in a range of 80–120 μV) with the low working currents of 15–20 μA, yielding a wafer yield rate of 78%. In summary, the SQUIDs show excellent performance in terms of magnetic field white noises, modulation amplitudes, and working currents, which are suitable for the very weak magnetic signal detection. One of future studies will focus on optimizing the SQUID chip fabrication process to minimize performance variations between chips on the same wafer.
  • 图 1  (a) SQUID晶圆集成示意图; (b) 探测线圈晶圆集成示意图

    Figure 1.  (a) Wafer of SQUIDs; (b) the wafer of pickup coils.

    图 2  SQUID芯片封装示意图 (a) 引线键合; (b) SQUID封装成品图

    Figure 2.  SQUID chip packaging: (a) The lead bonding; (b) the final SQUID packaging.

    图 3  测试电路框图 (a) I-V特性、V-Φ特性测试框图; (b) 噪声测试框图

    Figure 3.  Block diagrams of the test circuits: (a) Block diagram for I-V and V-Φ characteristic measurements; (b) block diagram for noise measurement.

    图 4  (a) 磁强计在不同环境中的磁场噪声谱; (b) 梯度计在不同环境中的磁场噪声谱

    Figure 4.  (a) Magnetic field noise spectrum diagrams of MAG in different environments; (b) magnetic field noise spectrum diagrams of GRA in different environments.

    图 5  单元脑磁SQUID芯片的参数特性曲线 (a) 磁强计与梯度计磁场与磁通噪声图; (b) 磁强计与梯度计的I-V特性曲线; (c) 磁强计与梯度计的最大电压摆幅特性曲线

    Figure 5.  Parametric characteristic curves of single MEG SQUID chip: (a) Magnetic fields and flux noises of MAG and GRA; (a) the I-V characteristic curves of MAG and GRA; (c) the maximum voltage swing characteristic curves of MAG and GRA.

    图 6  磁强计与梯度计不同外加磁场的Ic分布 (a) 磁强计Ic散点图; (b) 磁强计直方图; (c) 梯度计Ic散点图; (d) 梯度计直方图

    Figure 6.  Distribution of Ic under different external magnetic fields of MAG & GRA: (a) The Ic scatter plot of MAG; (b) the MAG histogram; (c) the Ic scatter plot of GRA; (d) the GRA histogram.

    图 7  最大电压摆幅与偏置电流对应图 (a) 磁强计; (b) 梯度计

    Figure 7.  Plots of maximum voltage swings and bias currents: (a) Magnetometers; (b) gradiometers.

    图 8  SQUID芯片低频磁场噪声Z-score谱(对数坐标) (a) 磁强计低频噪声Z-score谱; (b) 梯度计低频噪声Z-score谱(实线表示噪声的均值曲线, 阴影部分表示噪声的波动范围(Mean ±3σ))

    Figure 8.  Z-score spectrum of low-frequency magnetic field noise of SQUID chip (logarithmic coordinate): (a) Z-score spectrum of low-frequency noise of MAG; (b) Z-score spectrum of low-frequency noise of GRA (The solid line represents the mean noise curve, and the shaded area indicates the noise fluctuation range (Mean ±3σ)).

    图 9  磁强计与梯度计磁场噪声 (a) 磁强计磁场噪声分布图; (b) 梯度计磁场噪声分布图; (c) 磁强计与梯度计磁场噪声散点图

    Figure 9.  MAG & GRA magnetic field noise: (a) The noise distribution plot of MAG; (b) the noise distribution plot of GRA; (c) the noise scatter plot of MAG and GRA.

    表 1  SQUID设计参数

    Table 1.  Parameters for designing a SQUID.

    SQUID结构参数数值单位
    约瑟夫森结尺寸0.7×0.7μm2
    临界电流密度2kA/cm2
    临界电流10μA
    结电容0.03pF
    结电阻35Ω
    βc1
    环电感环结构1 st order gradiometer
    内边长20μm
    线宽84μm
    单loop电感56pH
    Input线宽2μm
    Input线距2μm
    Input匝数18×2
    Input电感36nH
    DownLoad: CSV

    表 2  探测线圈设计参数

    Table 2.  Parameters for designing a pickup coil.

    器件类型参数数值单位
    磁强计Pickup内边长7000mm
    Pickup线宽500μm
    Pickup电感19nH
    梯度计Pickup内边长8000mm
    Pickup线宽500μm
    Pickup电感45nH
    DownLoad: CSV
  • [1]

    丁红胜, 陈赓华, 张利华, 黄旭光, 杨乾声 2006 北京科技大学学报 28 863

    Ding H S, Chen G H, Zhang L H, Huang X G, Yang Q S 2006 J. Univ. Sc. Thechnol. Beijing. 28 863

    [2]

    LI H, Zhang M Y 2025 IEEE Trans. Appl. Supercond. 74 1

    [3]

    Maslennikov Y V, Slobodchikov Y V, Krymov V A, Gulyaev Y V 2023 Pattern Recognit. Image Anal. 33 1402Google Scholar

    [4]

    盛经纬, 高家红 2021 物理 50 463

    Sheng J W, Gao J H 2001 Physics 50 463

    [5]

    Lin J, Wang M C, Zhao J 2020 J. Harbin Inst. Technol. (New Series) 27 101

    [6]

    漆汉宏 2004 博士学位论文(秦皇岛: 燕山大学

    QI H H 2004 Ph. D. Dissertation (QingHuangdao: YanShan University

    [7]

    Persky E, Sochnikov I, Kalisky B 2022 Annu. Rev. Condens. Matter Phys. 13 385Google Scholar

    [8]

    Sochnikov I, Davino D, Kalisky B 2020 Phys. Rev. Appl. 14 014020Google Scholar

    [9]

    Granata C, Vettoliere A, Vaccarone R 2007 IEEE Trans. Appl. Supercond. 17 796Google Scholar

    [10]

    Koelle D, Kleiner R, Ludwig F, Dantsker E, John C 1999 Rev. Mod. Phys. 71 631Google Scholar

    [11]

    Enpuku K, Minotani T 2001 IEICE Trans Electron, E84C 43

    [12]

    Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets VP, Shah N J, Dunin-Borkowski R E 2017 Supercond. Sci. Technol. 30 83001Google Scholar

    [13]

    Bechstein S, Köhn C, Drung D, Jan-Hendrik S, Kieler O, Morosh V, Schurig T 2017 Supercond. Sci. Technol. 30 34007Google Scholar

    [14]

    Carmine Granata, Vettoliere Antonio 2016 Phys. Rep. 614 1Google Scholar

    [15]

    Cantor R, Hall J 2015 IEEE Trans. Appl. Supercond. 15 82

    [16]

    Xiong W, Ying L L, Wang H, Zhang G F, Wang Z 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices Shanghai China, November 20-23, 2015 p282

    [17]

    Schmelz M, Zakosarenko V, Schönau T, Anders S, Kunert J, Meyer M, Meyer H G, Stolz R 2017 Supercond. Sci. Technol. 30 74010Google Scholar

    [18]

    Grönberg L, Kiviranta M, Vesterinen V, Lehtinen J, Simbierowicz S, Luomahaara J, Prunnila M, Hassel J 2017 Supercond. Sci. Technol. 30 125016Google Scholar

    [19]

    Storm J H, Kieler O, Korber R. 2020 IEEE Trans. Appl. Supercond. 30 1

    [20]

    Zhang G f, Zhang X, Wang Y l, Rong L L, Xie X M, Wang Z 2019 Physica C Supercond. Appl. 562 32Google Scholar

    [21]

    Silver A H, Zimmerma J 1967 Phys Phys. Rev. 157 314

    [22]

    Xie M, Schneiderman J F, Chukharkin M, Kalaboukhov A, Whitmarsh S, Lundqvist D, Winkler D 2015 IEEE Trans. Appl. Supercond. 25 6940248

    [23]

    倪志 2024 博士学位论文(上海: 中国科学院上海微系统与信息技术研究所

    Ni Z 2024 Ph. D. Dissertation (shanghai: Shanghai Institute of Microsystem and Information Technology

    [24]

    Drung D 2003 Supercond. Sci. Technol. 16 1320Google Scholar

    [25]

    Enpuku K, Yoshida K, Kohjiro S 1986 J. Appl. Phys. 60 4218Google Scholar

    [26]

    Wang Y L, Zhang S L, Zhang G F, Xu X F, Zhang C X, Wang Y, Xie X M 2020 Physica C 575 1353685Google Scholar

    [27]

    Li H, Zhang M Y 2024 Physica C 625 1354575Google Scholar

  • [1] MA Jun, OUYANG Penghui, CHAI Yaqiang, JIANG Qingquan, HE Qing, WEI Lianfu. Control of microwave photon transmissions in microwave quantum networks by elastic scattering. Acta Physica Sinica, doi: 10.7498/aps.74.20250404
    [2] Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.73.20231600
    [3] Zhang Lu-Lu, Bai Le-Le, Yang Yu-Lin, Yang Yong-Biao, Wang Yan-Hua, Wen Xin, He Jun, Wang Jun-Min. Improving the sensitivity of an optically pumped rubidium atomic magnetometer by using of a repumping laser beam. Acta Physica Sinica, doi: 10.7498/aps.70.20210920
    [4] Xu Da, Zhong Qing, Cao Wen-Hui, Wang Xue-Shen, Wang Shi-Jian, Li Jin-Jin, Liu Jian-She, Chen Wei. A second-order gradiometric superconducting quantum interference device current sensor with cross-coupled structure. Acta Physica Sinica, doi: 10.7498/aps.70.20201816
    [5] Liang Tian-Tian, Zhang Guo-Feng, Wu Wen-Tao, Ni Zhi, Wang Yong-Liang, Ying Li-Liang, Wu Jun, Rong Liang-Liang, Peng Wei, Gao Bo. Fabrication and experimental analysis of series superconducting quantum inteference device array. Acta Physica Sinica, doi: 10.7498/aps.70.20210467
    [6] Zheng Dong-Ning. Superconducting quantum interference devices. Acta Physica Sinica, doi: 10.7498/aps.70.20202131
    [7] Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen. Design and fabrication of low-noise superconducting quantum interference device magnetometer. Acta Physica Sinica, doi: 10.7498/aps.68.20190483
    [8] Zhao Guo-Rong, Huang Jing-Li, Su Yan-Qin, Sun Cong. Attitude estimation and three-axis magnetometer on-line calibration based on moving horizon estimation. Acta Physica Sinica, doi: 10.7498/aps.64.210502
    [9] Zhang Yong-Sheng, Qiu Yang, Zhang Chao-Xiang, Li Hua, Zhang Shu-Lin, Wang Yong-Liang, Xu Xiao-Feng, Ding Hong-Sheng, Kong Xiang-Yan. Multi-channel magnetocardiogardiography system calibration. Acta Physica Sinica, doi: 10.7498/aps.63.228501
    [10] Liu Ming, Xu Xiao-Feng, Wang Yong-Liang, Zeng Jia, Li Hua, Qiu Yang, Zhang Shu-Lin, Zhang Guo-Feng, Kong Xiang-Yan, Xie Xiao-Ming. Study on transmission characteristics of matching transformer in DC superconducting quantum interference device readout. Acta Physica Sinica, doi: 10.7498/aps.62.188501
    [11] Zhang Shu-Lin, Liu Yang-Bo, Zeng Jia, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device. Acta Physica Sinica, doi: 10.7498/aps.61.020701
    [12] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, doi: 10.7498/aps.58.5744
    [13] Lang Pei-Lin, Chen Ke, Zheng Dong-Ning, Zhang Ming-Jian, Qi Han-Hong, Zhao Zhong-Xian. A method for designing high-order planar superconducting quantum interference device gradiometer. Acta Physica Sinica, doi: 10.7498/aps.53.3530
    [14] Dong Zheng-Chao. . Acta Physica Sinica, doi: 10.7498/aps.51.894
    [15] Ding Hong-Sheng, Han Bin, Chen Geng-Hua, Zhang Li-Hua, Yang Qian-Sheng. . Acta Physica Sinica, doi: 10.7498/aps.51.220
    [16] Ma Peng, Yao Kun, Xie Fei-Xiang, Zhang Sheng-Yuan, Deng Peng, He Dong-Feng, Zhang Fan, Liu Yu-Yuan, Nie Rui-Juan, Wang Fu-Ren, Wang Shou-Zheng, Dai Yuan-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.224
    [17] HAN BING, CHEN GENG-HUA, XU FENG-ZHI, ZHAO SHI-PING, YANG QIAN-SHENG. YBCO STEP-EDGE JUNCTION DC-SQUID PLANAR GRADIOMETER. Acta Physica Sinica, doi: 10.7498/aps.49.2051
    [18] DU SHENG-WANG, DAI YUAN-DONG, WANG SHI-GUANG. TO PROBE THE PHASE OF THE ORDER PARAMETER IN HIGH-TEMPERATURE SUPERCONDUCTORS BY USING r.f. SQUID. Acta Physica Sinica, doi: 10.7498/aps.48.2364
    [19] CHEN YING-FEI, S.ZAREMBINSKI. DESIGN OF THE HIGH-Tc dc-SQUID MAGNETOMETER WITH A RESISTIVELY SHUNTED INDUCTANCE. Acta Physica Sinica, doi: 10.7498/aps.47.1369
    [20] MU JIAN-LIN, CAI SHI-DONG. THRESHOLD OF STOCHASTIC MOTION OF CHARGED PAR-TICLES IN GRADIENT MAGNETIC FIELD BY ELECTROSTATIC WAVE. Acta Physica Sinica, doi: 10.7498/aps.38.1818
Metrics
  • Abstract views:  369
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  02 April 2025
  • Accepted Date:  15 July 2025
  • Available Online:  25 August 2025
  • /

    返回文章
    返回