Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of diffusion dynamic behavior in [EMIm]+Cl+AlCl3 ionic liquid based on deep learning potential function

LIU Haoliang HE Huaxuan ZENG Chao CHENG Yonghong WU Kai XIAO Bing

Citation:

Molecular dynamics simulation of diffusion dynamic behavior in [EMIm]+Cl+AlCl3 ionic liquid based on deep learning potential function

LIU Haoliang, HE Huaxuan, ZENG Chao, CHENG Yonghong, WU Kai, XIAO Bing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The [EMIm]+Cl+AlCl3 ion liquid is a promising prototype electrolyte for aluminum-ion batteries (AIBs). Its ionic transport behavior involves multiple mobile species (Al3+, AlCl3, [AlCl4] and [Al2Cl7]), with ion migration mechanisms and conversion reactions among these species unsolved experimentally. This complexity results in heterogeneous ion migration mechanisms and sluggish diffusion kinetics, which cannot be accurately and reliably captured by the traditional first-principles molecular dynamics (FPMD) simulations within the very limited time duration (tens of ps) and relatively small modelling structure (less than 103 atoms). The classic molecular dynamics simulations based on various force fields are also scarce for studying and predicting the atomic structure evolution and ion diffusion dynamics of the complex electrolyte system such as ion liquids. In this work, a deep neural network interatomic potential (DP-potential) is developed through machine learning techniques, combining first-principles accuracy with classical molecular dynamics efficiency, to systematically investigate various chemical and physical properties for [EMIm]+Cl+AlCl3 ion-liquid at finite temperatures. Training and validating of DP potential for [EMIm]+Cl+AlCl3 ion liquid are implemented with a two-stage protocol, including the primary training stage and the refining stage. Before initiating the two training stages, a series of first-principles molecular dynamics (FPMD) simulations is performed for [EMIm]+Cl+AlCl3 ion liquids with different molar ratios (1.0, 1.3, 1.5, 1.7 and 2.0) and equilibrium densities (1.09—1.56 g/cm3) at finite temperatures (300 K and 400 K), resulting in a highly diverse training datasets spanning a board range of chemical compositions and densities during the primary training stage for DP potential. Then, the trained DP-potential is employed to conduct long-timescale classic molecular dynamics simulations by using LAMMPS program for the [EMIm]+Cl+AlCl3 ion liquids to produce the atomic configurations that either show significant errors in the calculated atomic forces and total energies or exhibit the unusual atomic evolution before crashing. Those highly extrapolated atomic configurations are merged with the initial training datasets to reoptimize the DP potential in the second refining stage. Through this two-stage training approach, a deep learning neural network interatomic potential with high accuracy is successfully constructed, achieving an energy prediction error of 5 × 10–4 eV/atom and a force prediction error of 5 × 10–2 eV/Å. The reliability of the finally obtained machine learning potential is further validated through a systematic comparison of radial distribution functions (RDF) for some representative atomic pairs such as C—N, C—H, Al—Cl and Cl—H, obtained from both DP-MD and FPMD, demonstrating excellent consistency for the results from the two methods. The DP-MD simulations are systematically carried out to investigate vibrational spectrum and Al3+ diffusion dynamics as well as possible conversion reactions among molecular or ionic species (Al3+, AlCl3, [AlCl4] and [Al2Cl7]) in [EMIm]+Cl+AlCl3 ion liquids within 104 atoms at finite temperatures. From the calculated vibrational density of states (VDOS), it can be seen that the VDOS of [EMIm]+Cl+AlCl3 ion liquid can be approximated as a simple superposition of the vibrational spectra of individual species ([EMIm]+, [AlCl4], and [Al2Cl7]), with H related vibrational modes dominating above 90 THz and the Al—Cl modes dominating below 20 THz. At 300 K, DP-MD predicts that regardless of the chemical compositions, the diffusion coefficient of Al3+ remains around 4 × 10–7 cm2/s at 300 K and the estimated diffusion activation energy is about 0.20 eV, which is very close to the experimental measurement value (0.15 eV). In addition, the calculated ionic conductivity of [EMIm]+Cl+AlCl3 at room temperature is 27.37 mS/cm, with a deviation of only 18.2% from the experimental value (23.15 mS/cm). Notably, two different Al3+ diffusion mechanisms are identified in [EMIm]+Cl+AlCl3 ion liquid: 1) direct migration processes conducted solely by molecular species including [AlCl4] and [Al2Cl7], and 2) the migration of the neutral AlCl3 molecule mediated with two neighboring [AlCl4] anions through the conversion reaction between [Al2Cl7] and AlCl3+[AlCl4] moieties. Furthermore, first-principles calculations on the probable dissociation pathways of [Al2Cl7] revealed from DP-MD predict a reaction energy barrier height of 0.49 eV for the AlCl3 transferring between two [AlCl4] anions with an increased reaction probability from 0.00047 events/(ps·Al3+) at 1∶1.3 molar ratio to 0.00347 events/(ps·Al3+) at 1∶1.75 molar ratio. Overall, a highly efficient and reliable workflow to train and validate the deep neural network interatomic potential for complex electrolyte system is successfully proposed, such as [EMIm]+Cl+AlCl3 ion liquids, thus providing a more comprehensive investigation of Al3+ transport mechanisms in ionic liquid electrolytes for aluminum-ion batteries. In conclusion, this work can further advance the application of machine learning-based potentials in simulating electrolyte systems characterized by complex molecular architectures and sluggish diffusion dynamics.
  • 图 1  [EMIm]+Cl+AlCl3离子液体分子结构模型 (a) 阴阳离子单元分子结构, 其中给出了Al—Cl键键级及每个氯离子所带电荷; (b) 训练集模型; (c) 性质计算采用的分子动力学模型

    Figure 1.  Modeling structures of [EMIm]+Cl+AlCl3 ionic liquid: (a) Basic building blocks of cation and anion where the Al–Cl bond orders and charges on each chloride ion are indicated by numbers; (b) training set models; (c) molecular structures for property calculations using molecular dynamics simulations.

    图 2  [EMIm]+Cl+AlCl3离子液体深度学习势训练和验证流程

    Figure 2.  Workflow of training and validation of deep learning potential for [EMIm]+Cl+AlCl3 ionic liquid.

    图 3  不同[EMIm]+Cl∶AlCl3比例时机器学习势对能量与力精度RMSE的测试结果, 总能量 (a) 1∶1.0; (b) 1∶1.5; (c) 1∶2.0; (g) 1∶1.6, T = 350 K; 原子受力 (d) 1∶1.0; (e) 1∶1.5; (f) 1∶2.0; (h) 1∶1.6, T = 350 K

    Figure 3.  Validation of the trained machine learning potential by means of RMSE for [EMIm]Cl-AlCl3 ion liquids with different molar ratios, total energy: (a) 1∶1.0; (b)1∶1.5; (c) 1∶2.0; (d) 1∶1.6, T = 350 K; atomic force: (e) 1∶1.0; (f) 1: 1.5; (g) 1∶2.0; (h) 1∶1.6, T = 350 K.

    图 4  CP2 K及DeePMD分子动力学模拟的在不同的 [EMIm]+Cl∶AlCl3 = 1∶x(x取值范围为1.0—2.0)比例下代表性原子对的径向分布函数对比 (a) C—N; (b) C—H; (c) Al—Cl; (d) Cl—H; (e)机器学习势预测x = 1.6时的RDF与CP2 K计算结果的对比

    Figure 4.  Comparison of radial distribution functions via CP2 K and DeePMD molecular dynamics simulations for representative atomic pairs in [EMIm]+Cl∶AlCl3 ionic liquids at 1∶x ratios (1.0 ≤ x ≤ 2.0): (a) C—N; (b) C—H; (c) Al—Cl; (d) Cl—H; (e) comparison of the predicted RDFs using machine learning potential when x = 1.6 with those of profiles obtained from CP2 K program.

    图 5  DP势分子动力学计算得到的[EMIm]+Cl+AlCl3离子液体总的VDOS与DFT计算的孤立阴阳离子振动谱的对比 (a) 300 K时的VDOS与阴阳离子振动谱分析对比; (b) 300 K结果与350 K结果对比; (c) 300 K结果与350 K结果在高频部分(> 80 THz)的对比

    Figure 5.  VDOS profiles obtained from DP-MD simulations versus vibrational frequencies of the isolated cation and anions in [EMIm]+Cl+AlCl3 ion-liquid at 1∶1 to 1∶2 molar ratios: (a) VDOS at 300 K; (b) comparison of VDOS profiles at 300 K and 350 K; (c) comparison of VDOS at 300 K and 350 K above 80 THz.

    图 6  [EMIm]+Cl+AlCl3离子液体不同温度及摩尔浓度下的扩散性质 (a) [EMIm]+Cl∶AlCl3 = 1.0∶1.0时的均方位移; (b) [EMIm]+Cl∶AlCl3 = 1.0∶1.5时的均方位移; (c) [EMIm]+Cl∶AlCl3 = 1.0∶2.0时的均方位移; (d) Al3+的扩散系数; (e) [EMIm]+的扩散系数; (f) Al3+和[EMIm]+的扩散激活能

    Figure 6.  The diffusion properties of EMIm]+Cl+AlCl3 ionic liquids from DP-MD simulations at various temperatures and molar ratios: (a) MSD for the molar ratio of 1.0∶1.0; (b) MSD for the molar ratio of 1.0∶1.5; (c) MSD for the molar ratio of 1.0∶2.0; (d) diffusion coefficients of Al3+; (e)diffusion coefficients of [EMIm]+; (f) diffusion activation energy of Al3+ and [EMIm]+.

    图 7  不同温度下, [EMIm]+Cl∶AlCl3 = 1∶1时离子液体电导率实验值[20]与理论预测值对比

    Figure 7.  Comparison ofexperimental[20] and the predicted ionic electrical conductivity for [EMIm]+Cl∶AlCl3 (1∶1) at various temperatures.

    图 8  DFT计算得到的[EMIm]+Cl+AlCl3过渡结构原子受力情况

    Figure 8.  Analysis of atomic forces acting on intermediate structures in [EMIm]+Cl+AlCl3 ionic liquid from DFT method.

    图 9  (a) AlCl3通过[Al2Cl7]+AlCl3转换反应传递扩散过程及对应转换反应能垒; [AlCl4]与[Al2Cl7]互相转化反应的(b)瞬态频率(每ps反应发生次数)及(c)累计频率情况(反应发生次数累计)

    Figure 9.  (a) Migration mechanism of AlCl3 through the conversion reaction between [Al2Cl7] and AlCl3, and the corresponding reaction barrier heights; (b) transient and cumulative conversion rates (per ps) between [AlCl4] to [Al2Cl7]; (c) cumulative conversion rate during the whole DP-MD duration.

    表 1  机器学习势训练集初始设置

    Table 1.  Atomic configurations and computational parameters for obtaining ML potential training data.

    摩尔比原子数[AlCl4]/
    [Al2Cl7]/
    [EMIm]/
    温度/K密度/(g·mL–1)系综
    1.0408170174001.09NPT
    3001.09NPT
    3001.28NVT
    3001.44NVT
    1.3376114154001.21NPT
    3001.21NPT
    3001.34NVT
    3001.52NVT
    1.536477144001.17NPT
    3001.17NPT
    3001.36NVT
    3001.52NVT
    1.7376410144001.27NPT
    3001.27NPT
    3001.38NVT
    3001.55NVT
    2.0364013134001.30NPT
    3001.30NPT
    3001.41NVT
    3001.56NVT
    DownLoad: CSV

    表 2  基于机器学习势的分子动力学模拟体系结构设置及参数

    Table 2.  Initial setups and structural parameters for molecular dynamics simulations using machine learning potential.

    摩尔比原子数/个起始晶格大小/Å[EMIm]+/
    [AlCl4]/
    [Al2Cl7]/
    1.0010320554304300
    1.301008055400280120
    1.50988057380190190
    1.75102605738095285
    2.0010360573700370
    DownLoad: CSV
  • [1]

    Das A, Balakrishnan N T M, Sreeram P, Fatima M J J, Joyner J D, Thakur V K, Pullanchiyodan A, Ahn J, Raghavan P 2024 Coordin. Chem. Rev. 502 215593Google Scholar

    [2]

    Taghavi-Kahagh A, Roghani-Mamaqani H, Salami-Kalajahi M 2024 J. Energy Chem. 90 77Google Scholar

    [3]

    Muoz-Torrero D, Jesús Palma, Marcilla R, Ventosa 2019 Dalton T. 48 9906Google Scholar

    [4]

    Liu H L, Wang H Y, Jing Z A, Wu K, Cheng Y H, Xiao B 2020 J. Phys. Chem. C 124 25769Google Scholar

    [5]

    Stephanie R, Park C Y, Shinde P A, Alhajri E, Chodankar N R, Park T J 2024 Energy Storage Mater. 68 103336Google Scholar

    [6]

    Manna S S, Bhauriyal P, Pathak B 2020 Mater. Adv. 1 1354Google Scholar

    [7]

    Yan C S, Lv C D, Wang L G, Cui W, Zhang L Y, Dinh K N, Tan H T, Wu C, Wu T P, Ren Y, Chen J Q, Liu Z, Srinivasan M, Rui X H, Yan Q Y, Yu G H 2020 J. Am. Chem. Soc. 142 15295Google Scholar

    [8]

    Lin M C, Gong M, Lu B G, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J, Dai H J 2015 Nature 520 324Google Scholar

    [9]

    Elterman V A, Borozdin A V, Druzhinin K D, Il’ina E A, Shevelin P Y, Yolshina L A 2024 J. Mol. Liq. 394 123702Google Scholar

    [10]

    Lv Z C, Han M, Sun J H, Hou L X, Chen H, Li Y X, Lin M C 2019 J. Power Sources 418 233Google Scholar

    [11]

    Ng K L, Malik M, Buch E, Glossmann T, Hintennach A, Azimi G 2019 Electrochim. Acta 327 135031Google Scholar

    [12]

    Lv T S, Suo L M 2021 Curr. Opin. Electrochem. 29 100818Google Scholar

    [13]

    Gao T, Li X G, Wang X W, Hu J K, Han F D, Fan X L, Suo L M, Pearse A J, Lee S B, Rubloff G W, Gaskell K J, Noked M, Wang C S 2016 Angew. Chem. 128 10052Google Scholar

    [14]

    Lei H P, Wang M Y, Tu J G, Jiao S Q 2019 Sustain. Energ. Fuels 3 2717Google Scholar

    [15]

    Huo X G, Zhang B, Li J L, Wang X X, Qin T, Zhang Y, Kang F Y 2021 ACS Appl. Mater. Interfaces 13 11822Google Scholar

    [16]

    Ahmed A N, Nahian M K, Reddy R G 2024 Metall. Mater. Trans. B 55 1754Google Scholar

    [17]

    Liu H L, Zeng C, Jing Z A, Wu K, Cheng Y H, Xiao B 2025 Nanoscale 17 5375Google Scholar

    [18]

    Li J H, Zeng F S, El-Demellawi J K, Lin Q C, Xi S K, Wu J W, Tang J C, Zhang X X, Liu X J, Tu S B 2022 ACS Appl. Mater. Interfaces 14 45254Google Scholar

    [19]

    Kosar M, Taimoory S M, Diesenhaus O, Trant J F 2023 J. Chem. Phys. 159 144503Google Scholar

    [20]

    Elterman V A, Shevelin P Y, Yolshina L A, Borozdin A V 2022 J. Mol. Liq. 364 120061Google Scholar

    [21]

    Senftle T P, Hong S, Islam M M 2016 npj Comput. Mater. 2 15011Google Scholar

    [22]

    Jain A 2024 Curr. Opin. Solid St. M. 33 101189Google Scholar

    [23]

    Poltavsky I, Tkatchenko A 2021 J. Phys. Chem. Lett. 12 6551Google Scholar

    [24]

    Song R, Liu X M, Wang H B, Lv H, Song X Y 2024 Acta Phys. Sin. 73 126201 [宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳 2024 物理学报 73 126201]Google Scholar

    Song R, Liu X M, Wang H B, Lv H, Song X Y 2024 Acta Phys. Sin. 73 126201Google Scholar

    [25]

    Botu V, Batra R, Chapman J, Ramprasad R 2017 J. Phys. Chem. C 121 511Google Scholar

    [26]

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702 [王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702]Google Scholar

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702Google Scholar

    [27]

    Ouyang X J, Zhang Y X, Wang Z L, Zhang F, Chen W J, Zhuang Y, Jie X, Liu L J, Wang D W 2024 Acta Phys. Sin. 73 086301 [欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威 2024 物理学报 73 086301]Google Scholar

    Ouyang X J, Zhang Y X, Wang Z L, Zhang F, Chen W J, Zhuang Y, Jie X, Liu L J, Wang D W 2024 Acta Phys. Sin. 73 086301Google Scholar

    [28]

    Li Z Q, Tan X Y, Duan X L, Zhang J Y, Yang J Y 2022 Acta Phys. Sin. 71 247803 [李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃 2022 物理学报 71 247803]Google Scholar

    Li Z Q, Tan X Y, Duan X L, Zhang J Y, Yang J Y 2022 Acta Phys. Sin. 71 247803Google Scholar

    [29]

    Zhu D, Li Sheng, Hu T P, Chen S, Shi M C, Hua H M, Yang K, Wang J L, Tang Y P, He X M, Xu H et al. 2024 J. Phys. Chem. Lett. 15 4024Google Scholar

    [30]

    Zheng Z Y, Zhou J, Zhu Y S 2024 Chem. Soc. Rev. 53 3134Google Scholar

    [31]

    Wu M W, Wei Z, Zhao Y, He Q 2025 Nanomaterials 15 22

    [32]

    Gong S, Zhang Y M, Mu Z L, Pu Z C, Wang H Y, Han X, Yu Z A, Chen M Y, Zhang T Z, Wang Z, Chen L F, Yang Z Z, Wu X J, Shi S C, Gao W H, Yan W, Xiang L 2025 Nat. mach. Intell. 7 543Google Scholar

    [33]

    Thomas D. Kühne T D, Iannuzzi M, Mauro Del Ben M D, Rybkin V V, Seewalk P, Stein F, Laino T, Khaliullin R Z, Scheütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian M H, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter G K, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy C J, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J 2020 J. Chem. Phys. 152 194103Google Scholar

    [34]

    Zeng J Z, Zhang D, Peng A Y, Zhang X Y, He S S, Wang Y, Liu X Z J, Bi H R, Li Y F, Cai C, Zhang C Q, Du Y M, Zhu J X, Mo P H, Huang Z T, Zeng Q Y, Shi S C, Qin X J, Yu Z X, Luo C X, Ding Y, Liu Y P, Shi R S, Wang Z Y, Bore S L, Chang J H, Deng Z, Ding Z H, Han S Y, Jiang W R, Ke G J, Liu Z Q, Lu D H, Muraoka K, Oliaei H, Singh A K, Que H H, Xu W H, Xu Z M C, Zhuang Y B, Dai J Y, Giese T J, Jia W L, Xu B, York D M, Zhang L F, Wang H 2025 J. Chem. Theory Comput. 21 4375Google Scholar

    [35]

    Martínez L, Andrade R, Birgin E G, Martínez J M 2009 J. Comput. Chem. 30 2157Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 1396

    [37]

    VandeVondele J, Hutter J 2007 J. Chem. Phys. 127 114105Google Scholar

    [38]

    Goedecker S, Teter M, Hutter J. 1996 Phys. Rev. B 54 1703Google Scholar

    [39]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [40]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar

    [41]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 10817

    [42]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [43]

    Manz T A 2017 RSC Adv. 7 45552Google Scholar

  • [1] ZHANG Suncheng, HAN Tongwei, WANG Rumeng, YANG Yantao, ZHANG Xiaoyan. Prediction and optimization of negative Poisson’s ratio in rhombic perforated graphene based on machine learning. Acta Physica Sinica, doi: 10.7498/aps.74.20241624
    [2] YANG Huan, ZHENG Yujun. Geometric phase in molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250388
    [3] HU Xiaochuan, ZHANG Yimiao, JIN Xinrui, XING Renfang, ZHANG Rui. Effect of cold atmospheric plasma induced electric fields on cell membrane electroporation and related transport functions. Acta Physica Sinica, doi: 10.7498/aps.74.20250080
    [4] NI Weirong, HUANG Hailong, LU Xiaoyong, WANG Xiaodong. Influence of energetic heavy ion sputtering on lifetime of alloy target. Acta Physica Sinica, doi: 10.7498/aps.74.20240711
    [5] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, doi: 10.7498/aps.72.20221815
    [6] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, doi: 10.7498/aps.69.20200690
    [7] Yin Yu-Ming, Zhao Ling-Ling. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, doi: 10.7498/aps.69.20191742
    [8] Liu Qiang, Guo Qiao-Neng, Qian Xiang-Fei, Wang Hai-Ning, Guo Rui-Lin, Xiao Zhi-Jie, Pei Hai-Jiao. Molecular dynamics simulation of void nucleation, growth and closure of nano-Cu/Al films under cyclic loading. Acta Physica Sinica, doi: 10.7498/aps.68.20181901
    [9] Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing. Dynamics of polarons in organic conjugated polymers with impurity ions. Acta Physica Sinica, doi: 10.7498/aps.65.067202
    [10] Lin Chang-Peng, Liu Xin-Jian, Rao Zhong-Hao. Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.64.083601
    [11] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.63.086102
    [12] Chen Xian, Wang Yan-Wu, Wang Xiao-Yan, An Shu-Dong, Wang Xiao-Bo, Zhao Yu-Qing. Effect of titanium ion energy on surface structure during the amorphous titanium dioxide film deposition. Acta Physica Sinica, doi: 10.7498/aps.63.246801
    [13] Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu. Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system. Acta Physica Sinica, doi: 10.7498/aps.63.086401
    [14] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.63.200508
    [15] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.62.247101
    [16] Liu Hai, Li Qi-Kai, He Yuan-Hang. Pyrolysis of CL20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations. Acta Physica Sinica, doi: 10.7498/aps.62.208202
    [17] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, doi: 10.7498/aps.62.245202
    [18] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, doi: 10.7498/aps.60.016107
    [19] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.56.5389
    [20] Liu Hao, Ke Fu-Jiu, Pan Hui, Zhou Min. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface. Acta Physica Sinica, doi: 10.7498/aps.56.407
Metrics
  • Abstract views:  547
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  23 June 2025
  • Accepted Date:  13 August 2025
  • Available Online:  25 August 2025
  • /

    返回文章
    返回