-
Ion sputtering will occur when energetic heavy ion incident ion collection and deposition structure with negative charge. Metal wire is a structure commonly used for ion acceleration processes, continuous high-throughput ion incidence can cause surface loss of metal wire, affecting the service performance and lifespan of the metal wire. The SRIM software commonly used for calculating sputtering yield, the multi-body interaction problem contained in the alloy crystal structure cannot be considered, however, so, there is a significant error in calculating the sputtering yield of high-energy ion incident alloy targets. Based on the Molecular Dynamics method and Langevin temperature control model, the calculation model of ion sputtering parameters of energetic metal ion incident alloy target is established. The model was used to calculate the sputtering yield under the conditions of intact surface lattice of the target material and long-term incident surface lattice damage. The damage of the cathode metal wire under different ion incident amounts was further calculated, and carried out the cross-sectional characterization of the metal wire under typical working condition. The results showed that the deviation between the experimental value and the theoretical value was less than 10%, which verified the accuracy and applicability of the theoretical model. Based on this model, proposed the search direction for sputtering resistant materials, meanwhile, carried out a theoretical method to improve the service life of the metal wire, which is of great significance for predicting the service life of the metal wire under different conditions.
-
Keywords:
- Heavy-energy ion sputtering /
- Molecular dynamics /
- Alloy target /
- Service life
-
[1] Tian M B, Cui F Z 1987 Phys. 17 177(in Chinese) [田民波,崔福斋 1987 物理 17 177]
[2] Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of sci. and Tech. 26 69(in Chinese) [张莱,张竹林 2006 安徽理工大学学报26 69]
[3] Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202(in Chinese)[李体军,崔岁寒,刘亮亮 李晓渊,吴忠灿,马正永,傅劲裕,田修波,朱剑豪,吴忠振 2021 物理学报 70 045202]
[4] Chen C Z, Ma D L, Li Y D, Leng Y X 2021 Acta Phys. Sin. 70 180701(in Chinese)[陈畅子 马东林 李延涛 冷永祥 2021 物理学报 70 180701]
[5] Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338(in Chinese)[朱红莲,王德武 2002 物理学报 51 1338]
[6] Xie F Q 2008 Acta Phys. Sin. 57 1784(in Chinese)[谢国锋 2008 物理学报 57 1784]
[7] Ziegler J F, M.D. Ziegler, Biersack J P. 2008 NIM-B 268 1818
[8] Sigmund P 1969 Phys. Rev. 184 383
[9] Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659(in Chinese)[邵其鋆,霍裕昆,陈建新,吴士明,潘正瑛 1991 物理学报 40 659]
[10] Nastja Mahne, Miha Cekada, Matjaž Panjan 2022 Coatings 12 1541
[11] Fan K Q, Jia J Y 2005 Micronanoelectronic Tech. 42 133(in Chinese)[樊康旗,贾建援2005 微纳电子技术 42 133]
[12] Lu H F, Zhang C, Zhang Q Y 2003 NIM-B 206 22
[13] Pastewka L, Salzer R, Graff A 2009 NIM-B 267 3072
[14] Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828
[15] Feil H,Zwol J,Zwart S T,Dieleman J 1991 Phys. Rev. B 43 13695
[16] Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Materials 6 075402
[17] Plimpton S 1995 JCPH 117 1
[18] Tran H, Chew H B 2023 Carbon 205 180
[19] Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301(in Chinese)[颜超段军红 何兴道 2011 物理学报 60 088301]
[20] Shuichi Nose 1984 JCP 81 511
[21] Slavinskaya N A 1998 Matem. Mod. 34 3
[22] Daw M S Foiles S M, Baskes M I 1993 Matl. Sci. Rep. 9 251
[23] Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122—156
[24] Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801(in Chinese)[颜超,黄莉莉,何兴道 2014 物理学报 63 126801]
Metrics
- Abstract views: 118
- PDF Downloads: 3
- Cited By: 0