-
The localization is one of the active and fundamental research areas in topology physics. In this field, a comprehensive understanding of how wave functions distribute within a system is crucial. This work delves into this topic by proposing a novel systematic method based on a generalized Su-Schrieffer-Heeger (SSH) model. This model incorporates a quasiperiodic non-Hermitian term that appears at an off-diagonal position, adding a layer of complexity to the traditional SSH framework. By utilizing this model, we analyze the localization behaviors of both bulk state and edge state. For the bulk states, the analysis reveals a fascinating transition sequence. Specifically, the bulk states can undergo an extended-coexisting-localized-coexisting-localized transition, which is induced by the introduction of quasidisorder. This transition is not arbitrary but is rather conformed by the inverse participation ratio (IPR), a metric that quantifies the degree of localization of a wave function. As quasidisorder increases, the bulk states initially remain extended, but gradually, some states begin to be localized. A coexistence region appears where both extended and localized states are present. Further increase in quasidisorder leads to a complete localization of all bulk states. However, remarkably, within a certain range of quasidisorder strengths, the localized states can once again transition back to an extended state, creating another coexistence region. This complex behavior demonstrates the rich and diverse localization properties of the bulk states in non-Hermitian quasiperiodic systems. In addition to the IPR, other metrics such as the normalized participation ratio (NPR) and the fractal dimension of the eigenstates also play important roles in characterizing the localization behavior. These metrics provide a more in-depth understanding of the transition process and help to confirm the existence of the coexistence regions. Overall, we comprehensively analyze the localization behaviors of bulk and edge states in non-Hermitian quasiperiodic systems based on a generalized SSH model. The proposed systematic method present new insights into the complex interplay between quasidisorder, non-Hermiticity, and localization properties in topological physics. -
Keywords:
- non-Hermitian /
- quasidisorder /
- reentrant-localized /
- topological phase transition
[1] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[2] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005
Google Scholar
[3] Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators 919 2
Google Scholar
[4] Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press
[5] Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters (Vol. 174) (Berlin: Springer
Google Scholar
[6] Yokomizo K, Murakami S 2020 Phys. Rev. Research 2 043045
Google Scholar
[7] Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Phys. Rev. B 97 121401
Google Scholar
[8] Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115
Google Scholar
[9] He P, Huang Z H 2020 Phys. Rev. A 102 062201
Google Scholar
[10] Torres L E F F 2019 J. Phys.: Mater. 3 014002
Google Scholar
[11] Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128
Google Scholar
[12] Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101
Google Scholar
[13] Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102
Google Scholar
[14] Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402
Google Scholar
[15] Xu Y, Wang S T, Duan L M 2017 Phys. Rev. Lett. 118 045701
Google Scholar
[16] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501
Google Scholar
[17] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402
Google Scholar
[18] Rufangura P, Folland T G, Agrawal A, Caldwell J D, Iacopi F 2020 J. Phys.: Mater. 3 032005
Google Scholar
[19] Jin L, Song Z 2019 Phys. Rev. B 99 081103
Google Scholar
[20] Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124 056802
Google Scholar
[21] Takata K, Notomi M 2018 Phys. Rev. Lett. 121 213902
Google Scholar
[22] Chen Y, Zhai H 2018 Phys. Rev. B 98 245130
Google Scholar
[23] Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307
Google Scholar
[24] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M 2018 Science 359 eaar4003
Google Scholar
[25] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761
Google Scholar
[26] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M, Zhen B 2018 Science 359 1009
Google Scholar
[27] Deng T S, Yi W 2019 Phys. Rev. B 100 035102
Google Scholar
[28] Ezawa M 2019 Phys. Rev. B 99 201411
Google Scholar
[29] Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nat. Commun. 10 297
Google Scholar
[30] Kawabata K, Ashida Y, Katsura H, Ueda M 2018 Phys. Rev. B 98 085116
Google Scholar
[31] Cai J Q, Yang Q Y, Xue Z Y, Gong M, Guo G C, Hu Y 2019 arXiv:1812.02610 [cond-mat.mes-hall]
[32] Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805
Google Scholar
[33] Yoshida T, Kudo K, Hatsugai Y A 2019 Sci. Rep. 9 16895
Google Scholar
[34] Luitz D J, Piazza F 2019 Phys. Rev. Research 1 033051
Google Scholar
[35] Rosenthal E I, Ehrlich N K, Rudner M S, Higginbotham A P, Lehnert K W 2018 Phys. Rev. B 97 220301
Google Scholar
[36] Lee T E 2016 Phys. Rev. Lett. 116 133903
Google Scholar
[37] Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
Google Scholar
[38] Xiong Y 2018 J. Phys. Commun. 2 035043
Google Scholar
[39] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803
Google Scholar
[40] Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404
Google Scholar
[41] Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402
Google Scholar
[42] Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402
Google Scholar
[43] Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 1
Google Scholar
[44] Guo G F, Bao X X, Tan L 2021 New J. Phys. 23 123007
Google Scholar
[45] Bao X X, Guo G F, Tan L 2021 J. Phys. Condens. Matter 33 465403
Google Scholar
[46] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079
Google Scholar
[47] Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001
Google Scholar
[48] Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402
Google Scholar
[49] Leykam D, Bliokh K Y, Huang C, Chong Y D, Nori F 2017 Phys. Rev. Lett. 118 040401
Google Scholar
[50] Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nat. Commun. 12 5681
Google Scholar
[51] Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115
Google Scholar
[52] Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015
Google Scholar
[53] Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801
Google Scholar
[54] Zhang X, Gong J 2020 Phys. Rev. B 101 045415
Google Scholar
[55] Longhi S 2018 Annalen der Physik 530 1800023
Google Scholar
[56] Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414
Google Scholar
[57] Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New J. Phys. 23 123008
Google Scholar
[58] Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202
Google Scholar
[59] Wang B X, Zhao C Y 2021 Phys. Rev. A 103 013727
Google Scholar
[60] Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325
Google Scholar
[61] Agarwal K S, Joglekar Y N 2021 Phys. Rev. A 104 022218
Google Scholar
[62] Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201
Google Scholar
[63] Liu Y, Wang Y, Liu X J, Zhou Q, Chen S 2021 Phys. Rev. B 103 014203
Google Scholar
[64] Liu T, Guo H, Pu Y, Longhi S 2020 Phys. Rev. B 102 024205
Google Scholar
[65] Zhai L J, Yin S, Huang G Y 2020 Phys. Rev. B 102 064206
Google Scholar
[66] Cai X 2021 Phys. Rev. B 103 014201
Google Scholar
[67] Longhi S 2021 Phys. Rev. B 103 054203
Google Scholar
[68] Zhang C, Sheng L, Xing D 2021 Phys. Rev. B 103 224207
Google Scholar
[69] Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202
Google Scholar
[70] Wang Z H, Xu F, Li L, Xu D H, Wang B 2021 Phys. Rev. B 104 174501
Google Scholar
[71] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
Google Scholar
[72] Longhi S 2019 Phys. Rev. Lett. 122 237601
Google Scholar
[73] Zhou L 2021 Phys. Rev. Research 3 033184
Google Scholar
[74] Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301
Google Scholar
[75] Hou J, Wu Y J, Zhang C 2021 Phys. Rev. A 103 033305
Google Scholar
[76] Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z, Zhu S L 2020 Phys. Rev. B 101 235150
Google Scholar
[77] Wu C, Fan J, Chen G, Jia S 2021 New J. Phys. 23 123048
Google Scholar
[78] Zuo Z W, Kang D 2022 Phys. Rev. A 106 013305
Google Scholar
[79] 吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 物理学报 71 113702
Google Scholar
Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702
Google Scholar
[80] Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203
Google Scholar
[81] Li X, Li X P, Das Sarma S 2017 Phys. Rev. B 96 085119
Google Scholar
[82] Li X, Das Sarma S 2020 Phys. Rev. B 101 064203
Google Scholar
[83] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801
Google Scholar
[84] Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Science China Physics, Mechanics & Astronomy 63 267062
Google Scholar
[85] Luo X W, Zhang C W 2023 Appl. Phys. Lett. 123 081111
Google Scholar
[86] Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355
Google Scholar
[87] Roy S, Khaymovich I M, Das A, Moessner R 2018 SciPost Phys. 4 025
Google Scholar
[88] Longhi S, Gatti D, Della Valle G 2015 Phys. Rev. B 92 094204
Google Scholar
[89] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311
Google Scholar
[90] Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J, Fan S 2021 Science 371 1240
Google Scholar
[91] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Greiter M, Thomale R 2020 Nat. Phys. 16 747
Google Scholar
[92] Ghatak A, Brandenbourger M, van Wezel J, Coulais C 2020 Proc. Natl. Acad. Sci. U.S.A. 117 29561
Google Scholar
[93] Liu T, He J J, Yoshida T, Xiang Z L, Nori F 2020 Phys. Rev. B 102 235151
Google Scholar
[94] Brouwer P W, Silvestrov P G, Beenakker C W J 1997 Phys. Rev. B 56 R4333
Google Scholar
-
图 1 (a) ${\rm{IPR}} ^{{\mathrm{B}}} $(红)和${\rm{NPR}} ^{{\mathrm{B}}} $(蓝)随$ W_{1} $的变化, 灰色区域代表共存状态; (b), (c)体能谱的实部和虚部, 附着色代表本征态 的${\rm{IPR}} ^{|\varPsi^{n}\rangle} $值; (d)拓扑零能$ |E|^{0} $与对应的$ {\text{IPR}^{0}}/{5} $和${\rm{NPR}} ^{0} $; (e)拓扑不变量. 参数为$ t_{1} = 1 $, $ t_{2} = 2.5 $, $ \gamma = 0.2 $, $ L = 2000 $ 和$ W_{2} = -2\cos(3 W_{1})+2 $
Figure 1. (a) ${\rm{IPR}} ^{{\mathrm{B}}} $ (red) and ${\rm{NPR}} ^{{\mathrm{B}}} $ (blue) versus $ W_{1} $, the shaded regions stand for coexisting regimes; (b), (c) real and imaginary parts of bulk energy spectrum, where the dressed colors stand for different values of ${\rm{IPR}} ^{|\varPsi^{n}\rangle} $ for each bulk eigenstates; (d) topological edge modes $ |E|^{0} $, accompanied by the corresponding $ {\text{IPR}^{0}}/{5} $ and ${\rm{NPR}} ^{0} $; (e) topological invariant as a function of $ W_{1} $. Common parameters are $ t_{1} = 1 $, $ t_{2} = 2.5 $, $ \gamma = 0.2 $, $ L = 2000 $ and $ W_{2} = -2\cos(3 W_{1})+2 $.
图 2 (a1)—(e1)复平面能谱及其${\rm{IPR}} ^{|\varPsi^{n}\rangle} $; (a2)—(e2)蓝色和红色曲线代表一些体态的局域性质, 绿色条代表边缘态的局域性质. 为了显示清楚, 这些物理量已按比例缩放. (a1), (a2) $ W_{1} = 0.15 $, 所有体态均为扩展态; (b1), (b2) $ W_{1} = 0.35 $, 一些态仍为扩展态, 但一些态转为局域态; (c1), (c2) $ W_{1} = 1 $, 所有的体态均转变为局域态; (d1), (d2) $ W_{1} = 2.02 $, 部分已经局域的本征态会再转变为扩展态; (e1), (e2) $ W_{1} = 3.8 $, 所有的体态再次全部转变为局域态. 其他参数和图1取值一致
Figure 2. (a1)–(e1) Energy spectrum on the complex plane with corresponding ${\rm{IPR}} ^{|\varPsi^{n}\rangle} $; (a2)–(e2) both the blue and red lines stand for the localized properties of some bulk eigenstates, and the zero-energy state is shown as the green bar. For a better visibility, the values have been scaled proportionally. (a1), (a2) $ W_{1} = 0.15 $, all bulk eigenstates are extended; (b1), (b2) $ W_{1} = 0.35 $, some eigenstates are still extended while some are localized; (c1), (c2) $ W_{1} = 1 $, all bulk eigenstates are transformed into localized; (d1), (d2) $ W_{1} = 2.02 $, some already localized states will change into extended; (e1)–(e2) $ W_{1} = 3.8 $, all bulk eigenstates are transformed into localized again. Other parameters are the same as the ones in Fig. 1.
图 3 (a) $ L = 12000 $, 随着γ变化的${\rm{IPR}} ^{{\mathrm{B}}} $(红)和${\rm{NPR}} ^{{\mathrm{B}}} $(蓝), 两个灰色区域代表共存状态; (b) $ \gamma = 4.66946 $, ${\rm{NPR}} ^{{\mathrm{B}}} $的有限尺寸效应分析, 系统尺寸分别为$ L = 20000 $, $ 30000 $和$ 40000 $; (c)体能谱实部, 不同附着色代表$ \eta^{|\varPsi^{n}\rangle} $的不同取值, $ L = 6000 $; (d) $ |E|^{0} $与对应的${\rm{IPR}} ^{0} $和${\rm{NPR}} ^{0} $随着γ的变化趋势, $ L = 2000 $; (e)系统尺寸$ L = 12000 $时${\rm{NPR}} ^{0} $对γ的导数; (f)拓扑不变量随参数γ的变化趋势, $ L = 2000 $. 其他参数为$ t_{1} = 9 $, $ t_{2} = 1 $, $ W_{1} = 0.0039 $和$ W_{2} = 1.563 $
Figure 3. (a) $ L = 12000 $, ${\rm{IPR}} ^{{\mathrm{B}}} $ (red) and ${\rm{NPR}} ^{{\mathrm{B}}} $ (blue) evolving with γ, the two shaded regions stand for intermediate regimes; (b) finite size scaling analysis of ${\rm{NPR}} ^{{\mathrm{B}}} $ at $ \gamma = 4.66946 $ for $ L = 20000 $, $ 30000 $ and $ 40000 $, respectively; (c) real parts of bulk energy spectrum for $ L = 6000 $, where different colors stand for different values of $ \eta^{|\varPsi^{n}\rangle} $; (d) evolution of $ |E|^{0} $ versus γ associated with ${\rm{IPR}} ^{0} $ and ${\rm{NPR}} ^{0} $, $ L = 2000 $; (e) derivative of ${\rm{NPR}} ^{0} $ with respect to γ for $ L = 12000 $; (f) topological invariant versus parameter γ for $ L = 2000 $. Common parameters are $ t_{1} = 9 $, $ t_{2} = 1 $, $ W_{1} = 0.0039 $ and $ W_{2} = 1.563 $.
图 4 所有归一化体态的空间分布. 为了表示清楚, 系统尺寸取$ L = 1000 $, 并适当缩减能量值范围 (a) $ \gamma = 0.2 $, 扩展态与局域态一起出现; (b) $ \gamma = 1 $, 所有扩展态均转变为局域态; (c) $ \gamma = 4.66946 $, 一些局域态会转回扩展态; (d) $ \gamma = 5.5 $, 所有态再次变为局域态. 其他参数和图3 一致
Figure 4. Spatial distributions of normalized bulk eigenstates with the change of eigenvalues. For enhanced visibility, the system size is $ L = 1000 $, and the values of the energies have been cut down appropriately: (a) $ \gamma = 0.2 $, the extended and localized eigenstates appearing together; (b) $ \gamma = 1 $, all extended eigenstates being transformed into the localized; (c) $ \gamma = 4.66946 $, some localized eigenstates turning to the extended; (d) $ \gamma = 5.5 $, all extended eigenstates being transformed into the localized once again. Other parameters are the same as the ones in Fig. 3.
图 5 (a)拓扑不变量随$ W_{1} $的变化趋势; (b) $ |E|^{0} $与对应的${\rm{IPR}} ^{0} $和${\rm{NPR}} ^{0} $随$ W_{1} $的演化; (c) 图(b)其中一部分的详细信息; (d) ${\rm{NPR}} ^{0} $的导数, 显然其中存在一些不连续的点; (e)以$ W_{1} $为自变量的${\rm{IPR}} ^{{\mathrm{B}}} $(红)和${\rm{NPR}} ^{{\mathrm{B}}} $(蓝), 阴影区域表示扩展态和局域态共存; (f)体能谱的实部, 附着在其上的不同颜色代表不同的${\rm{IPR}} ^{|\varPsi^{n}\rangle} $值. 图(a), (b), (e) 和(f) $ L = 2000 $, 图(c)和(d) $ L = 10000 $, 其他参数为$ t_{1} = 1 $, $ t_{2} = 1.3 $, $ \gamma = 0.05 $和$ W_{2} = W_{1} $
Figure 5. (a) Topological invariant versus $ W_{1} $; (b) evolution of $ |E|^{0} $ via $ W_{1} $, associated with ${\rm{IPR}} ^{0} $ and ${\rm{NPR}} ^{0} $; (c) detailed information on the localization of the eigenstates with the lowest energy; (d) derivative of ${\rm{NPR}} ^{0} $, where there exist some discontinuity points; (e) ${\rm{IPR}} ^{{\mathrm{B}}} $ (red) and ${\rm{NPR}} ^{{\mathrm{B}}} $ (blue) being plotted as a function of $ W_{1} $. The shaded region indicates the coexisting regime, with extended and localized eigenstates being coexistence; (f) real part of bulk energy spectrum, where different colors stand for different values of ${\rm{IPR}} ^{|\varPsi^{n}\rangle} $. For panels (a), (b), (e) and (f) $ L = 2000 $, and for panels (c) and (d) $ L = 10000 $. Same parameters are $ t_{1} = 1 $, $ t_{2} = 1.3 $, $ \gamma = 0.05 $ and $ W_{2} = W_{1} $.
-
[1] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004
Google Scholar
[2] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005
Google Scholar
[3] Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators 919 2
Google Scholar
[4] Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press
[5] Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters (Vol. 174) (Berlin: Springer
Google Scholar
[6] Yokomizo K, Murakami S 2020 Phys. Rev. Research 2 043045
Google Scholar
[7] Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Phys. Rev. B 97 121401
Google Scholar
[8] Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115
Google Scholar
[9] He P, Huang Z H 2020 Phys. Rev. A 102 062201
Google Scholar
[10] Torres L E F F 2019 J. Phys.: Mater. 3 014002
Google Scholar
[11] Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128
Google Scholar
[12] Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101
Google Scholar
[13] Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102
Google Scholar
[14] Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402
Google Scholar
[15] Xu Y, Wang S T, Duan L M 2017 Phys. Rev. Lett. 118 045701
Google Scholar
[16] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501
Google Scholar
[17] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402
Google Scholar
[18] Rufangura P, Folland T G, Agrawal A, Caldwell J D, Iacopi F 2020 J. Phys.: Mater. 3 032005
Google Scholar
[19] Jin L, Song Z 2019 Phys. Rev. B 99 081103
Google Scholar
[20] Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124 056802
Google Scholar
[21] Takata K, Notomi M 2018 Phys. Rev. Lett. 121 213902
Google Scholar
[22] Chen Y, Zhai H 2018 Phys. Rev. B 98 245130
Google Scholar
[23] Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307
Google Scholar
[24] Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M 2018 Science 359 eaar4003
Google Scholar
[25] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761
Google Scholar
[26] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M, Zhen B 2018 Science 359 1009
Google Scholar
[27] Deng T S, Yi W 2019 Phys. Rev. B 100 035102
Google Scholar
[28] Ezawa M 2019 Phys. Rev. B 99 201411
Google Scholar
[29] Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nat. Commun. 10 297
Google Scholar
[30] Kawabata K, Ashida Y, Katsura H, Ueda M 2018 Phys. Rev. B 98 085116
Google Scholar
[31] Cai J Q, Yang Q Y, Xue Z Y, Gong M, Guo G C, Hu Y 2019 arXiv:1812.02610 [cond-mat.mes-hall]
[32] Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805
Google Scholar
[33] Yoshida T, Kudo K, Hatsugai Y A 2019 Sci. Rep. 9 16895
Google Scholar
[34] Luitz D J, Piazza F 2019 Phys. Rev. Research 1 033051
Google Scholar
[35] Rosenthal E I, Ehrlich N K, Rudner M S, Higginbotham A P, Lehnert K W 2018 Phys. Rev. B 97 220301
Google Scholar
[36] Lee T E 2016 Phys. Rev. Lett. 116 133903
Google Scholar
[37] Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
Google Scholar
[38] Xiong Y 2018 J. Phys. Commun. 2 035043
Google Scholar
[39] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803
Google Scholar
[40] Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404
Google Scholar
[41] Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402
Google Scholar
[42] Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402
Google Scholar
[43] Li L, Lee C H, Mu S, Gong J 2020 Nat. Commun. 11 1
Google Scholar
[44] Guo G F, Bao X X, Tan L 2021 New J. Phys. 23 123007
Google Scholar
[45] Bao X X, Guo G F, Tan L 2021 J. Phys. Condens. Matter 33 465403
Google Scholar
[46] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079
Google Scholar
[47] Ghatak A, Das T 2019 J. Phys. Condens. Matter 31 263001
Google Scholar
[48] Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402
Google Scholar
[49] Leykam D, Bliokh K Y, Huang C, Chong Y D, Nori F 2017 Phys. Rev. Lett. 118 040401
Google Scholar
[50] Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nat. Commun. 12 5681
Google Scholar
[51] Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115
Google Scholar
[52] Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015
Google Scholar
[53] Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801
Google Scholar
[54] Zhang X, Gong J 2020 Phys. Rev. B 101 045415
Google Scholar
[55] Longhi S 2018 Annalen der Physik 530 1800023
Google Scholar
[56] Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414
Google Scholar
[57] Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New J. Phys. 23 123008
Google Scholar
[58] Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202
Google Scholar
[59] Wang B X, Zhao C Y 2021 Phys. Rev. A 103 013727
Google Scholar
[60] Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325
Google Scholar
[61] Agarwal K S, Joglekar Y N 2021 Phys. Rev. A 104 022218
Google Scholar
[62] Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201
Google Scholar
[63] Liu Y, Wang Y, Liu X J, Zhou Q, Chen S 2021 Phys. Rev. B 103 014203
Google Scholar
[64] Liu T, Guo H, Pu Y, Longhi S 2020 Phys. Rev. B 102 024205
Google Scholar
[65] Zhai L J, Yin S, Huang G Y 2020 Phys. Rev. B 102 064206
Google Scholar
[66] Cai X 2021 Phys. Rev. B 103 014201
Google Scholar
[67] Longhi S 2021 Phys. Rev. B 103 054203
Google Scholar
[68] Zhang C, Sheng L, Xing D 2021 Phys. Rev. B 103 224207
Google Scholar
[69] Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202
Google Scholar
[70] Wang Z H, Xu F, Li L, Xu D H, Wang B 2021 Phys. Rev. B 104 174501
Google Scholar
[71] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
Google Scholar
[72] Longhi S 2019 Phys. Rev. Lett. 122 237601
Google Scholar
[73] Zhou L 2021 Phys. Rev. Research 3 033184
Google Scholar
[74] Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301
Google Scholar
[75] Hou J, Wu Y J, Zhang C 2021 Phys. Rev. A 103 033305
Google Scholar
[76] Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z, Zhu S L 2020 Phys. Rev. B 101 235150
Google Scholar
[77] Wu C, Fan J, Chen G, Jia S 2021 New J. Phys. 23 123048
Google Scholar
[78] Zuo Z W, Kang D 2022 Phys. Rev. A 106 013305
Google Scholar
[79] 吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 物理学报 71 113702
Google Scholar
Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702
Google Scholar
[80] Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203
Google Scholar
[81] Li X, Li X P, Das Sarma S 2017 Phys. Rev. B 96 085119
Google Scholar
[82] Li X, Das Sarma S 2020 Phys. Rev. B 101 064203
Google Scholar
[83] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801
Google Scholar
[84] Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Science China Physics, Mechanics & Astronomy 63 267062
Google Scholar
[85] Luo X W, Zhang C W 2023 Appl. Phys. Lett. 123 081111
Google Scholar
[86] Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355
Google Scholar
[87] Roy S, Khaymovich I M, Das A, Moessner R 2018 SciPost Phys. 4 025
Google Scholar
[88] Longhi S, Gatti D, Della Valle G 2015 Phys. Rev. B 92 094204
Google Scholar
[89] Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311
Google Scholar
[90] Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J, Fan S 2021 Science 371 1240
Google Scholar
[91] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Greiter M, Thomale R 2020 Nat. Phys. 16 747
Google Scholar
[92] Ghatak A, Brandenbourger M, van Wezel J, Coulais C 2020 Proc. Natl. Acad. Sci. U.S.A. 117 29561
Google Scholar
[93] Liu T, He J J, Yoshida T, Xiang Z L, Nori F 2020 Phys. Rev. B 102 235151
Google Scholar
[94] Brouwer P W, Silvestrov P G, Beenakker C W J 1997 Phys. Rev. B 56 R4333
Google Scholar
Catalog
Metrics
- Abstract views: 424
- PDF Downloads: 10
- Cited By: 0