Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Power spectrum based early warning signal of neuronal firing

LI Songwei XIE yong

Citation:

Power spectrum based early warning signal of neuronal firing

LI Songwei, XIE yong
cstr: 32037.14.aps.74.20241471
PDF
HTML
Get Citation
  • Brain diseases often occur simultaneously with critical changes in neural system and abnormal neuronal firing. Studying the early warning signals (EWSs) of critical changes can provide a promising approach for predicting neuronal firing behaviors, which is conducible to the early diagnosis and prevention of brain diseases. Traditional EWSs, such as autocorrelation and variance, have been widely used to detect the critical transitions in various dynamical systems. However, these methods have limitations in distinguishing different types of bifurcations. In contrast, the EWSs with power spectrum have shown a significant advantage in not only predicting bifurcation points but also distinguishing the types of bifurcations involved. Previous studies have demonstrated its predictive capability in climate and ecological models. Based on this, this study applies the EWS with power spectrum to neuronal systems in order to predict the neuronal firing behaviors and distinguish different classes of neuronal excitability. Specifically, we compute the EWSs before the occurrence of saddle-node bifurcation on the invariant circle and subcritical Hopf bifurcation in the Morris-Lecar neuron model. Additionally, we extend the analysis to the Hindmarsh-Rose model, calculating the EWSs before both saddle-node bifurcation and supercritical Hopf bifurcation. This study contains the four types of codimension-1 bifurcations corresponding to the neuronal firing. For comparison, we also calculate two types of conventional EWSs: lag-1 autocorrelation and variance. In numerical simulations, the stochastic differential equations are simulated by the Euler-Maruyama method. Then, the simulated responses are detrended by the Lowess filter. Finally, the EWSs are calculated by using the rolling window method to ensure the detection of EWS before bifurcation points. Our results show that the EWS with power spectrum can effectively predict the bifurcation points, which means that it can predict neuronal firing activities. Compared with the lag-1 autocorrelation and the variance, the EWSs with power spectrum not only accurately predict the neuronal firing, but also distinguish the classes of excitability in neurons. That is, according to the different characteristics of the power spectrum frequencies, the EWS with power spectrum can effectively distinguish between saddle-node bifurcations and Hopf bifurcations during neuronal firing. This work provides a novel approach for predicting the critical transitions in neural system, with potential applications in diagnosing and treating brain diseases.
      Corresponding author: XIE yong, yxie@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12172269).
    [1]

    Grziwotz F, Chang C W, Dakos V, et al. 2023 Sci. Adv. 9 eabq4558Google Scholar

    [2]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Boca Raton: CRC Press) pp70–80

    [3]

    Maturana M I, Meisel C, Dell K, et al. 2020 Nat. Commun. 11 2172Google Scholar

    [4]

    Dakos V, Carpenter S R, Brock W A, et al. 2012 PLoS One 7 e41010Google Scholar

    [5]

    Carpenter S R, Brock W A 2006 Ecol. Lett. 9 311Google Scholar

    [6]

    Held H, Kleinen T 2004 Geophys. Res. Lett. 31 L23207Google Scholar

    [7]

    Boettiger C, Hastings A 2012 J. R. Soc. Interface. 9 2527Google Scholar

    [8]

    Scheffer M, Bascompte J, Brock W A, et al. 2009 Nature 461 53Google Scholar

    [9]

    Lade S J, Gross T 2012 PLoS Comput. Biol. 8 e1002360Google Scholar

    [10]

    Carpenter S R, Brock W A 2011 Ecology 92 2196Google Scholar

    [11]

    Bauch C T, Sigdel R, Pharaon J, Anand M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14560Google Scholar

    [12]

    颜鹏程, 侯威, 胡经国 2012 物理学报 61 139202Google Scholar

    Yan P C, Hou W, Hu J G 2012 Acta Phys. Sin. 61 139202Google Scholar

    [13]

    吴浩, 封国林, 侯威, 颜鹏程 2013 物理学报 62 059202Google Scholar

    Wu H, Feng G L, Hou W, Yan P C 2013 Acta Phys. Sin. 62 059202Google Scholar

    [14]

    吴浩, 侯威, 颜鹏程, 封国林 2012 物理学报 61 209202Google Scholar

    Wu H, Hou W, Yan P C, Feng G L 2012 Acta Phys. Sin. 61 209202Google Scholar

    [15]

    Boers N 2018 Nat. Commun. 9 2556Google Scholar

    [16]

    Meisel C, Klaus A, Kuehn C, Plenz D 2015 PLoS Comput. Biol. 11 e1004097Google Scholar

    [17]

    Dakos V, Van Nes E H, D’Odorico P, Scheffer M 2012 Ecology 93 264Google Scholar

    [18]

    Kuznetsov Y A 2023 Elements of Applied Bifurcation Theory (Cham: Springer International Publishing) pp77–102

    [19]

    Bury T M, Bauch C T, Anand M 2020 J. R. Soc. Interface 17 20200482Google Scholar

    [20]

    Chen Z, Fan P Y, Hou X T, Feng G L, Qian Z H 2024 Chaos Soliton. Fract. 187 115409Google Scholar

    [21]

    Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Berlin: Springer) pp106–107

    [22]

    Box G E, Jenkins G M, Reinsel G C, Ljung G M 2015 Time Series Analysis: Forecasting and Control (Hoboken: John Wiley & Sons) pp21–47

    [23]

    Welch P 1967 IEEE Trans. Audio Electroacoustics 15 70Google Scholar

    [24]

    Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198Google Scholar

    [25]

    Liu C M, Liu X L, Liu S Q 2014 Biol. Cybern. 108 75Google Scholar

    [26]

    Kendall M G 1938 Biometrika 30 81Google Scholar

    [27]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

  • 图 1  折叠分岔中自相关和功率谱的近似解析解 (a) 特征值趋近于0; (b) 不同特征值下, 自相关函数随时滞$\tau $的变化; (c) 不同特征值下功率谱的变化

    Figure 1.  Approximate analytic solutions for autocorrelation and power spectra in fold bifurcation: (a) The eigenvalue approaching to zero; (b) autocorrelation versus lag $\tau $ under different eigenvalues; (c) variation of power spectrum under different eigenvalues.

    图 2  Hopf分岔中自相关和功率谱的近似解析解 (a) 特征值趋近于0; (b) 不同特征值下, 自相关函数随时滞$\tau $的变化; (c) 不同特征值下功率谱的变化

    Figure 2.  Approximate analytic solutions for autocorrelation and power spectra in Hopf bifurcation: (a) Real part of eigenvalues approaching to zero; (b) autocorrelation versus lag $\tau $ under different eigenvalues; (c) variation of power spectrum under different eigenvalues.

    图 3  ML模型膜电位对外加电流的分岔图(SNIC)

    Figure 3.  Bifurcation diagram of membrane potential versus externally applied current in ML model (SNIC).

    图 4  ML模型SNIC分岔前膜电位对增加的电流刺激的模拟响应

    Figure 4.  Simulated response of membrane potential versus increasing externally applied current on ML model before SNIC bifurcation.

    图 5  ML模型SNIC分岔前的残差数据

    Figure 5.  Residual of ML model before SNIC bifurcation.

    图 6  SNIC分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数随$I$变化; (b)方差随$I$变化; (c) ${S_{\max }}$随$I$变化

    Figure 6.  Three EWS’s on SNIC bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation versus $I$; (b) variance versus $I$; (c) ${S_{\max }}$ versus $I$.

    图 7  ML模型SNIC分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Figure 7.  Power spectrum of the ML model before the SNIC bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 8  ML模型膜电位对外加电流的分岔图(超临界Hopf)

    Figure 8.  Bifurcation diagram of membrane potential versus externally applied current in ML model (supercritical Hopf).

    图 9  ML模型超临界Hopf分岔前膜电位对增大的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Figure 9.  Simulated response of membrane potential versus increasing externally applied current on ML model before supercritical Hopf bifurcation: (a) Original series; (b) residual series.

    图 10  超临界Hopf分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Figure 10.  Three EWS’s on supercritical hopf bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 11  ML模型超临界Hopf分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Figure 11.  Power spectrum of the ML model before the supercritical Hopf bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 12  HR模型膜电位对外加电流的分岔图(鞍结分岔)

    Figure 12.  Bifurcation diagram of membrane potential versus externally applied current in HR model (saddle-node).

    图 13  HR模型鞍结分岔前膜电位对增加的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Figure 13.  Simulated response of membrane potential versus increasing externally applied current on HR model before saddle-node bifurcation: (a) Original series; (b) residual series.

    图 14  鞍结分岔的三种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Figure 14.  Three EWS’s on saddle-node bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 15  HR模型鞍结分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Figure 15.  Power spectrum of the HR model before the saddle-node bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

    图 16  HR模型膜电位对外加电流的分岔图(亚临界Hopf)

    Figure 16.  Bifurcation diagram of membrane potential versus externally applied current in HR model (subcritical Hopf).

    图 17  HR模型亚临界Hopf分岔前膜电位对增加的电流刺激的模拟响应 (a) 原始序列; (b) 残差序列

    Figure 17.  Simulated response of membrane potential versus increasing externally applied current on HR model before subcritical Hopf bifurcation: (a) Original series; (b) residual series.

    图 18  亚临界Hopf分岔的3种EWS随外加电流$I$的变化 (a) 时滞$\tau = 1$自相关系数; (b)方差; (c) ${S_{\max }}$

    Figure 18.  Three EWS’s on subcritical Hopf bifurcation versus externally applied current $I$: (a) Lag $\tau = 1$ autocorrelation; (b) variance; (c) ${S_{\max }}$.

    图 19  HR模型亚临界Hopf分岔的功率谱 (a)不同外加电流$I$下的功率谱; (b) 功率谱等高线图

    Figure 19.  Power spectrum of the HR model before the subcritical Hopf bifurcation: (a) Power spectrum under different externally applied current $I$; (b) contour map of power spectrum.

  • [1]

    Grziwotz F, Chang C W, Dakos V, et al. 2023 Sci. Adv. 9 eabq4558Google Scholar

    [2]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Boca Raton: CRC Press) pp70–80

    [3]

    Maturana M I, Meisel C, Dell K, et al. 2020 Nat. Commun. 11 2172Google Scholar

    [4]

    Dakos V, Carpenter S R, Brock W A, et al. 2012 PLoS One 7 e41010Google Scholar

    [5]

    Carpenter S R, Brock W A 2006 Ecol. Lett. 9 311Google Scholar

    [6]

    Held H, Kleinen T 2004 Geophys. Res. Lett. 31 L23207Google Scholar

    [7]

    Boettiger C, Hastings A 2012 J. R. Soc. Interface. 9 2527Google Scholar

    [8]

    Scheffer M, Bascompte J, Brock W A, et al. 2009 Nature 461 53Google Scholar

    [9]

    Lade S J, Gross T 2012 PLoS Comput. Biol. 8 e1002360Google Scholar

    [10]

    Carpenter S R, Brock W A 2011 Ecology 92 2196Google Scholar

    [11]

    Bauch C T, Sigdel R, Pharaon J, Anand M 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14560Google Scholar

    [12]

    颜鹏程, 侯威, 胡经国 2012 物理学报 61 139202Google Scholar

    Yan P C, Hou W, Hu J G 2012 Acta Phys. Sin. 61 139202Google Scholar

    [13]

    吴浩, 封国林, 侯威, 颜鹏程 2013 物理学报 62 059202Google Scholar

    Wu H, Feng G L, Hou W, Yan P C 2013 Acta Phys. Sin. 62 059202Google Scholar

    [14]

    吴浩, 侯威, 颜鹏程, 封国林 2012 物理学报 61 209202Google Scholar

    Wu H, Hou W, Yan P C, Feng G L 2012 Acta Phys. Sin. 61 209202Google Scholar

    [15]

    Boers N 2018 Nat. Commun. 9 2556Google Scholar

    [16]

    Meisel C, Klaus A, Kuehn C, Plenz D 2015 PLoS Comput. Biol. 11 e1004097Google Scholar

    [17]

    Dakos V, Van Nes E H, D’Odorico P, Scheffer M 2012 Ecology 93 264Google Scholar

    [18]

    Kuznetsov Y A 2023 Elements of Applied Bifurcation Theory (Cham: Springer International Publishing) pp77–102

    [19]

    Bury T M, Bauch C T, Anand M 2020 J. R. Soc. Interface 17 20200482Google Scholar

    [20]

    Chen Z, Fan P Y, Hou X T, Feng G L, Qian Z H 2024 Chaos Soliton. Fract. 187 115409Google Scholar

    [21]

    Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Berlin: Springer) pp106–107

    [22]

    Box G E, Jenkins G M, Reinsel G C, Ljung G M 2015 Time Series Analysis: Forecasting and Control (Hoboken: John Wiley & Sons) pp21–47

    [23]

    Welch P 1967 IEEE Trans. Audio Electroacoustics 15 70Google Scholar

    [24]

    Prescott S A, De Koninck Y, Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198Google Scholar

    [25]

    Liu C M, Liu X L, Liu S Q 2014 Biol. Cybern. 108 75Google Scholar

    [26]

    Kendall M G 1938 Biometrika 30 81Google Scholar

    [27]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

  • [1] Li Rui, Xu Bang-Lin, Zhou Jian-Fang, Jiang En-Hua, Wang Bing-Hong, Yuan Wu-Jie. A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle. Acta Physica Sinica, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang. Nonlinear acoustic characteristics of multilayer magnetic microbubbles. Acta Physica Sinica, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [3] Niu Hai-Bo, Yi Shi-He, Liu Xiao-Lin, Huo Jun-Jie, Gang Dun-Dian. Experimental study of crossflow instability in a Mach 6 delta wing flow. Acta Physica Sinica, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [4] Zuo Chun-Yan, Gao Fei, Dai Zhong-Ling, Wang You-Nian. PIC/MCC simulation of breakdown dynamics inside high power microwave output window. Acta Physica Sinica, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [5] Liu Xiao-Lin, Yi Shi-He, Niu Hai-Bo, Lu Xiao-Ge, Zhao Xin-Hai. Experimental investigation of the hypersonic boundary layer transition on a 7° straight cone. Acta Physica Sinica, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [6] Li Xiang, Liu Feng, Shuai Jian-Wei. Dynamical studies of cellular signaling networks in cancers. Acta Physica Sinica, 2016, 65(17): 178704. doi: 10.7498/aps.65.178704
    [7] Li Jia-Jia, Wu Ying, Du Meng-Meng, Liu Wei-Ming. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [8] Liu Da-Zhao, Wang Jun, Li Jin, Li Yu, Xu Wen-Min, Zhao Xiao. Analysis on power spectrum and base-scale entropy for heart rate variability signals modulated by reversed sleep state. Acta Physica Sinica, 2014, 63(19): 198703. doi: 10.7498/aps.63.198703
    [9] Wang Kai-Ming, Zhong Ning, Zhou Hai-Yan. Activity analysis of depression electroencephalogram based on modified power spectral entropy. Acta Physica Sinica, 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [10] Yan Peng-Cheng, Hou Wei, Hu Jing-Guo. The critical warning research of the mean time series mutations based on Logistic model. Acta Physica Sinica, 2012, 61(18): 189202. doi: 10.7498/aps.61.189202
    [11] Hu Yao-Gai, Zhao Zheng-Yu, Zhang Yuan-Nong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere. Acta Physica Sinica, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] Liu Yang-Yang, Zhang Wen-Xi. Simulation for Space target interference imaging system distorted by atmospheric turbulence. Acta Physica Sinica, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [13] Li Jin, Liu Da-Zhao. Changes of entropy and power spectrum in circadian rhythm for heart rate variability signals. Acta Physica Sinica, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [14] Cao Li, Zhang Liang-Ying, Jin Guo-Xiang. Stochastic resonance with frequency noise in a linear model of single-mode laser. Acta Physica Sinica, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [15] Huang Jun, Sun Shun-Kai, Xiao De-Long, Ding Ning, Ning Cheng, Zhang Yang, Xue Chuang. Two-dimensional numerical studies of ablated-plasma dynamics of wire-array Z-pinches. Acta Physica Sinica, 2010, 59(9): 6351-6361. doi: 10.7498/aps.59.6351
    [16] Xu Bin, Wu Zhen-Sen, Wu Jian, Xue Kun. Incoherent scatter spectrum of a collisional plasma. Acta Physica Sinica, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [17] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [18] Song Yan-Li. Harmonic velocity noise and its frequency resonance with the potential. Acta Physica Sinica, 2006, 55(12): 6482-6487. doi: 10.7498/aps.55.6482
    [19] Yuan Chang-Qing, Zhao Tong-Jun, Wang Yong-Hong, Zhan Yong. Spectrum analysis on dissipative motion in finite systems. Acta Physica Sinica, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] Jiang Yu-Qiang, Guo Hong-Lian, Liu Chun-Xiang, Li Zhao-Lin, Cheng Bing-Ying, Zhang Dao-Zhong, Jia Suo-Tang. Trapping stiffness measurement with brownian motion analysis method at low sampling frequency. Acta Physica Sinica, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
Metrics
  • Abstract views:  498
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2024
  • Accepted Date:  11 November 2024
  • Available Online:  25 November 2024
  • Published Online:  05 January 2025

/

返回文章
返回