-
In this paper, the experiments about the boundary layer transition on a 7° half-angle straight cone are carried out in a Mach 6 low-noise wind tunnel. The wall fluctuation pressure is measured by the transducer with megahertz response frequency, and the development process of the disturbance in the hypersonic boundary layer is investigated. The peaks in power spectrum density of the fluctuation pressure are related to the second mode wave, which is indicated through verifying the existence of the longitudinal acoustic second mode waves reflected between the relative sonic line and the solid wall by the flow visualization result. The wavelength and the characteristic frequency of the second mode wave in the hypersonic boundary layer are found to be greatly influenced by Reynolds number. The characteristic frequency of the second mode wave changes from 55 kHz to about 226 kHz when the Reynolds number increases from 2×106 m-1 to 8×106 m-1. The second mode wave appears at the position closer to the upstream with a higher disturbance growth speed under higher unit Reynolds number. As the second mode wave propagates downstream, its characteristic frequency gradually decreases. The freestream noise level also has a great influence on the development of the disturbance wave. The characteristic frequency of the second mode wave decreases significantly in a relatively quiet environment. The cross-correlation analysis results show that the propagation velocity of the second mode wave in the boundary layer is about 0.8-0.9 times the local mainstream velocity. The wavelength of the second mode wave is about 5.01 mm at the location from X=380 mm to X=440 mm when the unit Reynolds number is 5×106 m-1. At 1° angle of attack, the development of the boundary layer on the windward side and the leeward side of the cone are significantly different. The characteristic frequency of the second mode wave in the leeward surface is almost the same as the result at zero angle of attack under the same unit Reynolds number. However, the position of the second mode wave is greatly advanced. Results show that the disturbance development in the boundary layer of the leeward surface is accelerated, and the second mode wave appears at the position closer to the upstream. The velocity of the second mode wave in the leeward surface rapidly increases when it propagates downstream. While on the windward side, the disturbance development is inhibited and the second mode wave has a higher characteristic frequency. The wavelength of second mode wave also decreases obviously.
[1] Mack L M 1975 AIAA J. 13 278
[2] Mack L M 1984 AGARD Rep. 709
[3] Malik M 1989 AIAA J. 27 1487
[4] Reed H L, Saric W S 1996 Annu. Rev. Fluid Mech. 28 389
[5] Kendall J M 1974 AIAA P. 133
[6] Doggett G P 1996 Ph. D. Dissertation (Raleigh:North Carolina State University)
[7] Stetson K, Kimmel R 1992 AIAA P. 0737
[8] Casper K M, Beresh S J, Schneider S P 2014 J. Fluid Mech. 756 1058
[9] Chou A 2014 Ph. D. Dissertation (West Lafayette:Purdue University)
[10] Wheaton B M 2012 Ph. D. Dissertation (West Lafayette:Purdue University)
[11] Schneider S P 2015 Prog. Aerosp. Sci. 72 17
[12] Borisov S P, Bountin D A, Gromyko Y V, Khotyanovsky D V, Kudryavtsev A N 2016 International Conference on the Methods of Aerophysical Research Perm, Russia, June 27-July 3, 2016 p030057-1
[13] Keisuke F, Noriaki H, Hiroshi O, Tadao K, Shoichi T, Muneyoshi N, Yukihiro I, Akihiro N 2011 AIAA P. 3871
[14] Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]
[15] Wheaton B M, Juliano T J, Berridge D C, Chou A 2009 AIAA P. 3559
[16] Balakumar P, Kegerise M A 2015 AIAA J. 53 2097
[17] Jayahar S, Fasel H F 2015 J. Fluid Mech. 768 175
[18] Li X L, Fu D X, Ma Y W 2010 Phys. Fluids 22 025105
[19] Liu J X 2010 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[刘建新 2010 博士学位论文 (天津:天津大学)]
[20] Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687
[21] Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406
[22] Schneider S P, Haven C E 1995 AIAA J. 33 688
[23] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E:Technol. Sci. 52 3640
[24] Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G:Phys. Mech. Astron. 52 2001
[25] Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703 (in Chinese)[武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703]
[26] Christopher A, Katya C, Steven B, Steven S 2010 AIAA P. 897
[27] Katya C, Steven B, John H, Russell S, Brian P, Steven S 2009 AIAA P. 4054
[28] Chen M Z 2002 Fundamentals of Viscous Fluid Dynamics (Beijing:Higher Education Press) pp151-155 (in Chinese)[陈懋章 2002 黏性流体动力学基础(北京:高等教育出版社)第151–155页]
[29] Li X L, Fu D X, Ma Y W 2008 AIAA J. 46 2899
期刊类型引用(16)
1. 张震,易仕和,刘小林,陈世康,张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报. 2024(10): 224-232 . 百度学术 2. 胡玉发,易仕和,刘小林,徐席旺,张震,张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报. 2024(12): 150-163 . 百度学术 3. 曾瑞童,易仕和,陆小革,赵玉新,张博,冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报. 2024(16): 148-156 . 百度学术 4. 刘美宽,韩桂来,姜宗林. 高超声速平板边界层数值模拟及试验研究. 气动研究与试验. 2023(05): 51-61 . 百度学术 5. 霍俊杰,易仕和,牛海波,刘小林. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究. 气体物理. 2022(04): 67-76 . 百度学术 6. 朱博,熊波,吴巍,王宁. 定/变热线过热比跨超声速流场湍流度测量. 航空动力学报. 2022(09): 1815-1823 . 百度学术 7. 徐席旺,易仕和,张锋,郑文鹏,米琦. 高超声速圆锥边界层转捩实验研究. 气体物理. 2022(03): 45-59 . 百度学术 8. 沙心国,李睿劬,刘文伶,纪锋,袁湘江. 尖楔模型结构对脉动压力测量影响实验研究. 气体物理. 2021(03): 43-49 . 百度学术 9. 牛海波,易仕和,刘小林,霍俊杰,冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报. 2021(13): 271-282 . 百度学术 10. 郑文鹏,易仕和,牛海波,霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报. 2021(24): 213-223 . 百度学术 11. 易仕和,刘小林,牛海波,陆小革,何霖. 高超声速边界层流动稳定性实验研究. 空气动力学学报. 2020(01): 137-142 . 百度学术 12. 易仕和,刘小林,陆小革,牛海波,徐席旺. NPLS技术在高超声速边界层转捩研究中的应用. 空气动力学学报. 2020(02): 348-354+378 . 百度学术 13. Haibo NIU,Shihe YI,Xiaolin LIU,Xiaoge LU,Dundian GANG. Experimental investigation of boundary layer transition over a delta wing at Mach number 6. Chinese Journal of Aeronautics. 2020(07): 1889-1902 . 必应学术 14. 栗继伟,卢盼,汪球,赵伟. 激波风洞7°尖锥边界层转捩实验研究. 北京航空航天大学学报. 2020(11): 2087-2093 . 百度学术 15. 徐席旺,易仕和,张锋,熊浩西,石洋. 带轴对称台阶的圆锥高超声速边界层转捩试验. 宇航学报. 2019(08): 908-917 . 百度学术 16. 刘小林,易仕和,牛海波,陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报. 2018(21): 254-265 . 百度学术 其他类型引用(4)
-
[1] Mack L M 1975 AIAA J. 13 278
[2] Mack L M 1984 AGARD Rep. 709
[3] Malik M 1989 AIAA J. 27 1487
[4] Reed H L, Saric W S 1996 Annu. Rev. Fluid Mech. 28 389
[5] Kendall J M 1974 AIAA P. 133
[6] Doggett G P 1996 Ph. D. Dissertation (Raleigh:North Carolina State University)
[7] Stetson K, Kimmel R 1992 AIAA P. 0737
[8] Casper K M, Beresh S J, Schneider S P 2014 J. Fluid Mech. 756 1058
[9] Chou A 2014 Ph. D. Dissertation (West Lafayette:Purdue University)
[10] Wheaton B M 2012 Ph. D. Dissertation (West Lafayette:Purdue University)
[11] Schneider S P 2015 Prog. Aerosp. Sci. 72 17
[12] Borisov S P, Bountin D A, Gromyko Y V, Khotyanovsky D V, Kudryavtsev A N 2016 International Conference on the Methods of Aerophysical Research Perm, Russia, June 27-July 3, 2016 p030057-1
[13] Keisuke F, Noriaki H, Hiroshi O, Tadao K, Shoichi T, Muneyoshi N, Yukihiro I, Akihiro N 2011 AIAA P. 3871
[14] Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予 2016 物理学报 65 194701]
[15] Wheaton B M, Juliano T J, Berridge D C, Chou A 2009 AIAA P. 3559
[16] Balakumar P, Kegerise M A 2015 AIAA J. 53 2097
[17] Jayahar S, Fasel H F 2015 J. Fluid Mech. 768 175
[18] Li X L, Fu D X, Ma Y W 2010 Phys. Fluids 22 025105
[19] Liu J X 2010 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[刘建新 2010 博士学位论文 (天津:天津大学)]
[20] Chen F J, Malik M R, Beckwith I E 1989 AIAA J. 27 687
[21] Casper K M, Johnson H B, Schneider S P 2011 J. Spacecr. Rockets 48 406
[22] Schneider S P, Haven C E 1995 AIAA J. 33 688
[23] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E:Technol. Sci. 52 3640
[24] Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G:Phys. Mech. Astron. 52 2001
[25] Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703 (in Chinese)[武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703]
[26] Christopher A, Katya C, Steven B, Steven S 2010 AIAA P. 897
[27] Katya C, Steven B, John H, Russell S, Brian P, Steven S 2009 AIAA P. 4054
[28] Chen M Z 2002 Fundamentals of Viscous Fluid Dynamics (Beijing:Higher Education Press) pp151-155 (in Chinese)[陈懋章 2002 黏性流体动力学基础(北京:高等教育出版社)第151–155页]
[29] Li X L, Fu D X, Ma Y W 2008 AIAA J. 46 2899
期刊类型引用(16)
1. 张震,易仕和,刘小林,陈世康,张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报. 2024(10): 224-232 . 百度学术 2. 胡玉发,易仕和,刘小林,徐席旺,张震,张臻. 壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响. 物理学报. 2024(12): 150-163 . 百度学术 3. 曾瑞童,易仕和,陆小革,赵玉新,张博,冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报. 2024(16): 148-156 . 百度学术 4. 刘美宽,韩桂来,姜宗林. 高超声速平板边界层数值模拟及试验研究. 气动研究与试验. 2023(05): 51-61 . 百度学术 5. 霍俊杰,易仕和,牛海波,刘小林. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究. 气体物理. 2022(04): 67-76 . 百度学术 6. 朱博,熊波,吴巍,王宁. 定/变热线过热比跨超声速流场湍流度测量. 航空动力学报. 2022(09): 1815-1823 . 百度学术 7. 徐席旺,易仕和,张锋,郑文鹏,米琦. 高超声速圆锥边界层转捩实验研究. 气体物理. 2022(03): 45-59 . 百度学术 8. 沙心国,李睿劬,刘文伶,纪锋,袁湘江. 尖楔模型结构对脉动压力测量影响实验研究. 气体物理. 2021(03): 43-49 . 百度学术 9. 牛海波,易仕和,刘小林,霍俊杰,冈敦殿. 高超声速三角翼上横流不稳定性的实验研究. 物理学报. 2021(13): 271-282 . 百度学术 10. 郑文鹏,易仕和,牛海波,霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报. 2021(24): 213-223 . 百度学术 11. 易仕和,刘小林,牛海波,陆小革,何霖. 高超声速边界层流动稳定性实验研究. 空气动力学学报. 2020(01): 137-142 . 百度学术 12. 易仕和,刘小林,陆小革,牛海波,徐席旺. NPLS技术在高超声速边界层转捩研究中的应用. 空气动力学学报. 2020(02): 348-354+378 . 百度学术 13. Haibo NIU,Shihe YI,Xiaolin LIU,Xiaoge LU,Dundian GANG. Experimental investigation of boundary layer transition over a delta wing at Mach number 6. Chinese Journal of Aeronautics. 2020(07): 1889-1902 . 必应学术 14. 栗继伟,卢盼,汪球,赵伟. 激波风洞7°尖锥边界层转捩实验研究. 北京航空航天大学学报. 2020(11): 2087-2093 . 百度学术 15. 徐席旺,易仕和,张锋,熊浩西,石洋. 带轴对称台阶的圆锥高超声速边界层转捩试验. 宇航学报. 2019(08): 908-917 . 百度学术 16. 刘小林,易仕和,牛海波,陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究. 物理学报. 2018(21): 254-265 . 百度学术 其他类型引用(4)
Catalog
Metrics
- Abstract views: 7297
- PDF Downloads: 126
- Cited By: 20