Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel dynamic wavefront control scheme for ultra-fast beam smoothing

Li Teng-Fei Zhong Zhe-Qiang Zhang Bin

Citation:

Novel dynamic wavefront control scheme for ultra-fast beam smoothing

Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In inertial confinement facilities, the irradiation uniformity of the lasers is highly required to suppress the laser plasma instabilities. In order to realize the ultrafast smoothing of the focal spot, a novel scheme by using an optical Kerr medium and a high-power pump laser is proposed. The principle of the ultrafast beam smoothing scheme is to change the refractive index of the Kerr medium with the pump laser, which appends a spatiotemporal wavefront to the main laser beam in the beamline. The dynamic wavefront modulation of the main laser beam further makes the speckles within the focal spot redistributed rapidly and complicatedly, which contributes to the smoothing of the focal spot. A Gaussian beam with a temporal profile of a Gaussian pulse train is obliquely incident on the optical Kerr medium at a small angle. As a result, the spherical wavefront of the main laser beam is rapidly changed in the direction perpendicular to the propagation direction of the main laser beam. Thus the transverse and the radial redistribution of the speckles within the focal spot are both generated simultaneously. Comparing with the simple radial smoothing scheme, the spherical phase of the main laser beam always changes perpendicularly to the propagation direction in the novel scheme, and thus achieving a more stable beam smoothing effect. Besides, the phase gradient in the center region of the main laser beam changes greatly over time, making the irradiation uniformity on the focal plane further improved. The optimal deflection angle in the optical Kerr medium of the pump laser is obtained. By controlling the deflection angle of the pump laser, the spatial period of the pump laser in the transverse direction is set to be equal to the waist diameter of the main laser, which is identical with one color cycle in the typical smoothing by spectral dispersion technique. Moreover, a relatively low control precision of the deflection angle of the pump laser is required.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the National Major Project of China (Grant No. JG2017037).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyerhofer D D, Delettrez J A, Epstein R, Glebov V Y, Goncharov V N, Keck R L, McCrory R L, McKenty P W, Marshall F J, Radha P B, Regan S P, Roberts S, Seka W, Skupsky S, Smalyuk V A, Sorce C, Stoeckl C, Soures J M, Town R P J, Yaakobi B, Zuegel J D 2001 Phys. Plasmas 8 2251

    [3]

    Wen S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 162 (in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯 2014 光学学报 34 162]

    [4]

    Jiang X J, Zhou S L, Lin Z Q 2007 Chin. J. Laser 11 1533 (in Chinese)[江秀娟, 周申蕾, 林尊琪 2007 中国激光 11 1533]

    [5]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [6]

    Lehmberg R H, Schmitt A J, Bodner S E 1987 J. Appl. Phys. 62 2680

    [7]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [8]

    Berger R L, Lefebvre E, Langdon A B, Rothenberg J E, Still C H, Williams E A 1999 Phys. Plasmas 6 1043

    [9]

    Yahia V, Masson-Laborde P E, Depierreux S, Goyon C, Loisel G, Baccou C, BorisenkoN G, Orekhov A, Rienecker T, Rosmej O, Teychenné D, Labaune C 2015 Phys. Plasmas 22 042707

    [10]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318

    [11]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850

    [12]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

    [13]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, van Wonterghem B M 2007 Appl. Opt. 46 3276

    [14]

    Zeng S G, Hu J, Wang F 2013 Acta Opt. Sin. 33 156 (in Chinese)[曾曙光, 胡静, 王飞 2013 光学学报 33 156]

    [15]

    Bowers M W, Burkhart S C, Cohen S J, Erbert G V, Heebner J E, Hermann M R, Jedlovec D 2007 Proc. SPIE 6451 Solid State Lasers XVI:Technology and Devices San Jose, CA, United States, January 20-25, 2007 p64511

    [16]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion:Second Annual International Conference Paris, France, October 22-25, 1996 p783

    [17]

    Kedenburg S, Steinmann A, Hegenbarth R, Steinle T, Giessen H 2014 J. Appl. Phys. 117 803

    [18]

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 144 (in Chinese)[李腾飞, 侯鹏程, 张彬 2016 光学学报 36 144]

    [19]

    Zhang R 2013 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[张锐 2013 博士学位论文 (合肥:中国科学技术大学)]

    [20]

    Skupsky S, Short R W, Kessler T J, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [21]

    Rothenberg J E 1997 JOSA B 14 1664

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyerhofer D D, Delettrez J A, Epstein R, Glebov V Y, Goncharov V N, Keck R L, McCrory R L, McKenty P W, Marshall F J, Radha P B, Regan S P, Roberts S, Seka W, Skupsky S, Smalyuk V A, Sorce C, Stoeckl C, Soures J M, Town R P J, Yaakobi B, Zuegel J D 2001 Phys. Plasmas 8 2251

    [3]

    Wen S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 162 (in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯 2014 光学学报 34 162]

    [4]

    Jiang X J, Zhou S L, Lin Z Q 2007 Chin. J. Laser 11 1533 (in Chinese)[江秀娟, 周申蕾, 林尊琪 2007 中国激光 11 1533]

    [5]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [6]

    Lehmberg R H, Schmitt A J, Bodner S E 1987 J. Appl. Phys. 62 2680

    [7]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [8]

    Berger R L, Lefebvre E, Langdon A B, Rothenberg J E, Still C H, Williams E A 1999 Phys. Plasmas 6 1043

    [9]

    Yahia V, Masson-Laborde P E, Depierreux S, Goyon C, Loisel G, Baccou C, BorisenkoN G, Orekhov A, Rienecker T, Rosmej O, Teychenné D, Labaune C 2015 Phys. Plasmas 22 042707

    [10]

    Couris S, Renard M, Faucher O, Lavorel B, Chaux R, Koudoumas E, Michaut X 2003 Chem. Phys. Lett. 369 318

    [11]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850

    [12]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

    [13]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterson R, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmayer C C, White R K, Yang S T, van Wonterghem B M 2007 Appl. Opt. 46 3276

    [14]

    Zeng S G, Hu J, Wang F 2013 Acta Opt. Sin. 33 156 (in Chinese)[曾曙光, 胡静, 王飞 2013 光学学报 33 156]

    [15]

    Bowers M W, Burkhart S C, Cohen S J, Erbert G V, Heebner J E, Hermann M R, Jedlovec D 2007 Proc. SPIE 6451 Solid State Lasers XVI:Technology and Devices San Jose, CA, United States, January 20-25, 2007 p64511

    [16]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion:Second Annual International Conference Paris, France, October 22-25, 1996 p783

    [17]

    Kedenburg S, Steinmann A, Hegenbarth R, Steinle T, Giessen H 2014 J. Appl. Phys. 117 803

    [18]

    Li T F, Hou P C, Zhang B 2016 Acta Opt. Sin. 36 144 (in Chinese)[李腾飞, 侯鹏程, 张彬 2016 光学学报 36 144]

    [19]

    Zhang R 2013 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[张锐 2013 博士学位论文 (合肥:中国科学技术大学)]

    [20]

    Skupsky S, Short R W, Kessler T J, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [21]

    Rothenberg J E 1997 JOSA B 14 1664

  • [1] Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min. Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules. Acta Physica Sinica, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] Huang Tian-Xuan, Wu Chang-Shu, Chen Zhong-Jing, Yan Ji, Li Xin, Ge Feng-Jun, Zhang Xing, Jiang Wei, Deng Bo, Hou Li-Fei, Pu Yu-Dong, Dong Yun-Song, Wang Li-Feng. Improving symmetry tuning with I-raum in indirect-driven implosions. Acta Physica Sinica, 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [5] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [6] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [7] Fan Qing-Bin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [8] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [9] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [10] Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect. Acta Physica Sinica, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [11] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [12] Yan Ji, Zheng Jian-Hua, Chen Li, Tu Shao-Yong, Wei Min-Xi, Yu Bo, Liu Shen-Ye, Jiang Shao-En. The experimental research of pinhole point backlight based on Shenguang-Ⅲ proto-type facility. Acta Physica Sinica, 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [13] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [14] Jing Long-Fei, Huang Tian-Xuan, Jiang Shao-En, Chen Bo-Lun, Pu Yu-Dong, Hu Feng, Cheng Shu-Bo. Model analysis of experiments of implosion symmetry on Shenguang-Ⅱ and Shenguang-Ⅲ prototype laser facilities. Acta Physica Sinica, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [15] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [16] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [17] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [18] Liu Jin-Shan, Yang Jun-Yi, Song Ying-Lin, Hou Deng-Ke. Investigation of transient thermally induced nonlinear refraction in metal cluster polymer [Tp*W(μ3-S)3Cu3Py3(μ3-Br)](PF6)/DMF solution using the phase ob. Acta Physica Sinica, 2009, 58(8): 5810-5815. doi: 10.7498/aps.58.5810
    [19] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [20] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
Metrics
  • Abstract views:  6100
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2017
  • Accepted Date:  31 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回