Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad

Xiong Hao Zhong Zhe-Qiang Zhang Bin Sui Zhan Zhang Xiao-Min

Citation:

Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad

Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Aiming at the high requirements for illumination uniformity on the target in laser-driven inertial confinement fusion (ICF) facilities, an ultrafast smoothing method based on dynamic interference structure between beamlets of a laser quad is proposed. The basic principle of this scheme is to use a conjugate phase plate array to add the conjugate phase modulation to the multiple beamlets of a laser quad with a certain wavelength difference. Consequently, every two beamlets are coherently superposed in the far field to generate a dynamic interference pattern, resulting in the fast redistribution of the speckles introduced by continuous phase plate inside the focal spot and further improving the illumination uniformity on the target on a picosecond timescale. The coherent beamlets with a certain wavelength difference can be generated by using a broadband seed laser. Taking the laser quad of the typical ICF facilities for example, the physical model of the ultrafast smoothing method based on dynamic interference structure of beamlets is built up. The influences of the phase-plate type, the peak-to-valley value of the phase modulation and the wavelength difference between the beamlets are analyzed quantitatively, and the smoothing characteristics of the focal spot are discussed in detail and compared with those from the traditional temporal smoothing scheme such as smoothing by spectral dispersion. The results indicate that the directions of the moving speckles in the focal spot are determined by the phase-plate type. However, the required time to achieve stable illumination uniformity, i.e, the decay time, is determined by the wavelength difference between the beamlets. Moreover, the illumination uniformity on the target becomes better with the increase of peak-to-valley value of the phase modulation at first and then remains almost the same. Thus, the ultrafast smoothing method based on dynamic interference structures with well-designed phase arrays and wavelength combinations of the beamlets can realize the multi-directional and multi-dimensional speckle sweeping inside the focal spot, and further improving the irradiation uniformity on the target within several picoseconds or sub-picoseconds. Combining with the traditional beam smoothing scheme, better illumination uniformity can be achieved on an ultrashort timescale. This novel scheme can be used as an effective supplement to the existing temporal beam smoothing techniques.
      Corresponding author: Zhang Bin, zhangbin_scu@scu.edu.cn
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar

    [4]

    Néauport J, Ribeyre X, Daurios J, Valla D, Lavergne M, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar

    [5]

    高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展 2019 物理学报 68 075201Google Scholar

    Gao Y Q, Zhao X H, Jia G, Li F J, Cui Y, Rao D X, Ji L L, Liu D, Feng W, Huang X G, Ma W X, Sui Z 2019 Acta Phys. Sin. 68 075201Google Scholar

    [6]

    李福建, 高妍琦, 赵晓晖, 季来林, 王伟, 黄秀光, 马伟新, 隋展, 裴文兵 2018 物理学报 67 175201Google Scholar

    Li F J, Gao Y Q, Zhao X H, Ji L L, Wang W, Huang X G, Ma W X, Sui Z, Pei W B 2018 Acta Phys. Sin. 67 175201Google Scholar

    [7]

    Rothenberg J E 1997 J. Opt. Soc. Am. B 14 1664Google Scholar

    [8]

    龚涛 2015 博士学位论文 (合肥: 中国科学技术大学)

    Gong T 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [9]

    Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 1728Google Scholar

    [10]

    Berger R L, Lasinski B F, Langdon A B, Kaiser T B, Afeyan B B, Cohen B I, Still C H, Williams E A 1996 Phys. Rev. Lett. 76 3239Google Scholar

    [11]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 11 052301Google Scholar

    [12]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

    [13]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [14]

    Rothenberg J E 1995 Office of Scientific & Technical Information Technical Reports, Monterey, CA, May 30−June 2 1995 p634

    [15]

    钟哲强, 侯鹏程, 张彬 2016 物理学报 65 094207Google Scholar

    Zhong Z Q, Hou P C, Zhang B 2016 Acta Phys. Sin. 65 094207Google Scholar

    [16]

    Zhong Z Q, Yi M Y, Sui Z, Zhang X, Zhang B, Yuan X 2018 Opt. Lett. 43 3285Google Scholar

    [17]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference Paris, France, October 22−25, 1996 p783

    [18]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, et al. 2017 Appl. Opt. 46 3276

    [19]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [20]

    Spaeth M L, Manes K R, Bowers M, Celliers P, Nicola J M D, Nicola P D, Dixit S, Erbert G, Heebner J, Kalantar D, Landen O, MacGowan B, Wonterghem B V, Wegner P, Widmayer C, Yang S 2016 Fusion Sci. Technol. 69 366Google Scholar

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, et al. 2018 Matter and Radiation at Extremes 2 243

    [22]

    Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Feng W, Xia L, Liu J, Li X L, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar

    [23]

    苟斗斗, 杨四刚, 尹飞飞, 张磊, 邢芳俭, 陈宏伟, 陈明华, 谢世钟 2013 光学学报 33 78

    Gou D D, Yang S G, Yin F F, Zhang L, Xing F J, Chen H W, Chen M H, Xie S Z 2013 Acta Opt. Sin. 33 78

    [24]

    Spaeth M L, Manes K R, Kalantar D H, Miller P E, et al. 2016 Fusion Sci. Technol. 69 25Google Scholar

    [25]

    张锐 2013 博士学位论文 (合肥: 中国科学技术大学)

    Zhang R 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 1  基于束间动态干涉的快速匀滑方案示意图

    Figure 1.  Schematic illustration of smoothing by dynamic interference structures of beamlets.

    图 2  不同相位调制所得焦斑光通量对比度随时间的变化

    Figure 2.  The contrast of focal spots with different phase modulation.

    图 3  不同类型共轭相位调制的动态干涉图样 (a)倾斜相位; (b)柱面相位; (c)椭球面相位; (d)涡旋相位

    Figure 3.  Dynamic interference structures with different kinds of phase modulation: (a) Tilted phase; (b) cylinder phase; (c) ellipsoid phase; (d) spiral phase.

    图 4  不同类型相位板阵列的焦斑 (a)光通量对比度曲线和(b) FOPAI曲线

    Figure 4.  (a) Variation of contrast with integral time and (b) FOAPI curves with different phase plate array.

    图 5  不同PV的光通量对比度曲线

    Figure 5.  Variation of contrast with integral time with different PV.

    图 6  不同波长情况下, 差焦斑光通量对比度随时间的变化 (a) 600 μm × 500 μm焦斑80%环围能量; (b) 600 μm × 500 μm焦斑30%环围能量; (c) 350 μm × 350 μm焦斑80%环围能量

    Figure 6.  Variation of contrast with integral time of different Δλ: (a) 80% energy of the 600 μm × 500 μm focal spot; (b) 30% energy of the 600 μm × 500 μm focal spot; (c) 80% energy of the 350 μm × 350 μm focal spot.

    图 7  不同匀滑方案的焦斑光强分布 (a)仅CPP; (b) 2D-SSD + CPP; (c)动态干涉图样匀滑方法 + CPP; (d) 2D-SSD + 动态干涉图样匀滑方法 + CPP

    Figure 7.  Focused intensity distributions with different smoothing scheme: (a) CPP only; (b) 2D-SSD + CPP; (c) smoothing by dynamic interference structures of beamlets + CPP; (d) smoothing by dynamic interference structures of beamlets+2D-SSD + CPP.

    图 8  不同匀滑方案下, (a)光通量对比度随时间的变化和(b) FOPAI曲线

    Figure 8.  (a) Variation of contrast with integral time and (b) FOPAI curves with different smoothing scheme.

    表 1  不同相位分布的二维傅里叶变换表达式

    Table 1.  2D-Fourier transform of different phase distribution.

    $ {\varphi }_{1}(x_{f}, y_{f}) $$ B_{1}(x_{f}, y_{f}) $$ b_{1}(x_{f}, y_{f}) $
    x$ {\delta }[x_{f}/({\lambda f})+1/(2\text{π} )]{\delta }[y_{f}/({\lambda f})] $0
    x2$ \text{π} ^{1/2}\delta [y_{f}/(\lambda f) ]$$ \text{π} ^{2}x_{f}^{2}/({\lambda }^{2}f^{2})-3\text{π} /4 $
    $ -[h_{1}{ }(x/w)^{2}+ h_{2}(y/w)^{2}] $ $ w^{2}\text{π} (h_{1}h_{2})^{-1/2} $$ \text{π} ^{2}x_{f}^{2}/(h_{1}{\lambda }^{2}f^{2}w^{2})+\text{π} ^{2}y_{f}^{2}/(h_{2}{\lambda }^{2}f^{2}w^{2})-3\text{π} /2 $
    $ \arctan(y/x) $ $ [-{\lambda f}/(2\text{π} )]\{ {\delta }[x_{f}/({\lambda f})]{\rm d}{\delta }[y_{f}/({\lambda f})]/{\rm d}y_{f }- {\rm i}{\delta }[y_{f}/({\lambda f})]{\rm d}\delta [x_{f}/({\lambda f})]/{\rm d}x_{f}\} $
    DownLoad: CSV
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Dixit S N, Thomas I M, Woods B W, Morgan A J, Henesian M A, Wegner P J, Powell H T 1993 Appl. Opt. 32 2543Google Scholar

    [4]

    Néauport J, Ribeyre X, Daurios J, Valla D, Lavergne M, Beau V, Videau L 2003 Appl. Opt. 42 2377Google Scholar

    [5]

    高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展 2019 物理学报 68 075201Google Scholar

    Gao Y Q, Zhao X H, Jia G, Li F J, Cui Y, Rao D X, Ji L L, Liu D, Feng W, Huang X G, Ma W X, Sui Z 2019 Acta Phys. Sin. 68 075201Google Scholar

    [6]

    李福建, 高妍琦, 赵晓晖, 季来林, 王伟, 黄秀光, 马伟新, 隋展, 裴文兵 2018 物理学报 67 175201Google Scholar

    Li F J, Gao Y Q, Zhao X H, Ji L L, Wang W, Huang X G, Ma W X, Sui Z, Pei W B 2018 Acta Phys. Sin. 67 175201Google Scholar

    [7]

    Rothenberg J E 1997 J. Opt. Soc. Am. B 14 1664Google Scholar

    [8]

    龚涛 2015 博士学位论文 (合肥: 中国科学技术大学)

    Gong T 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [9]

    Montgomery D S, Moody J D, Baldis H A, Afeyan B B, Berger R L, Estabrook K G, Lasinski B F, Williams E A 1996 Phys. Plasmas 3 1728Google Scholar

    [10]

    Berger R L, Lasinski B F, Langdon A B, Kaiser T B, Afeyan B B, Cohen B I, Still C H, Williams E A 1996 Phys. Rev. Lett. 76 3239Google Scholar

    [11]

    Jiang Y E, Li X C, Zhou S L, Fan W, Lin Z Q 2013 Chin. Opt. Lett. 11 052301Google Scholar

    [12]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W, Skupsky S, Smalyuk V A 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

    [13]

    Regan S P, Marozas J A, Craxton R S, Kelly J H, Donaldson W R, Jaanimagi P A, Jacobs-Perkins D, Keck R L, Kessler T J, Meyerhofer D D, Sangster T C, Seka W, Smalyuk V A, Skupsky S, Zuegel J D 2005 J. Opt. Soc. Am. B 22 998

    [14]

    Rothenberg J E 1995 Office of Scientific & Technical Information Technical Reports, Monterey, CA, May 30−June 2 1995 p634

    [15]

    钟哲强, 侯鹏程, 张彬 2016 物理学报 65 094207Google Scholar

    Zhong Z Q, Hou P C, Zhang B 2016 Acta Phys. Sin. 65 094207Google Scholar

    [16]

    Zhong Z Q, Yi M Y, Sui Z, Zhang X, Zhang B, Yuan X 2018 Opt. Lett. 43 3285Google Scholar

    [17]

    Henesian M A, Haney S W, Thomas M, Trenholme J B 1997 Solid State Lasers for Application to Inertial Confinement Fusion: Second Annual International Conference Paris, France, October 22−25, 1996 p783

    [18]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, et al. 2017 Appl. Opt. 46 3276

    [19]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456Google Scholar

    [20]

    Spaeth M L, Manes K R, Bowers M, Celliers P, Nicola J M D, Nicola P D, Dixit S, Erbert G, Heebner J, Kalantar D, Landen O, MacGowan B, Wonterghem B V, Wegner P, Widmayer C, Yang S 2016 Fusion Sci. Technol. 69 366Google Scholar

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, et al. 2018 Matter and Radiation at Extremes 2 243

    [22]

    Cui Y, Gao Y Q, Rao D X, Liu D, Li F J, Ji L L, Shi H T, Liu J N, Feng W, Xia L, Liu J, Li X L, Wang T, Ma W X, Sui Z 2019 Opt. Lett. 44 2859Google Scholar

    [23]

    苟斗斗, 杨四刚, 尹飞飞, 张磊, 邢芳俭, 陈宏伟, 陈明华, 谢世钟 2013 光学学报 33 78

    Gou D D, Yang S G, Yin F F, Zhang L, Xing F J, Chen H W, Chen M H, Xie S Z 2013 Acta Opt. Sin. 33 78

    [24]

    Spaeth M L, Manes K R, Kalantar D H, Miller P E, et al. 2016 Fusion Sci. Technol. 69 25Google Scholar

    [25]

    张锐 2013 博士学位论文 (合肥: 中国科学技术大学)

    Zhang R 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] Li Zi-Jian, Lin Cheng-Liang, Wu Yong, Wang Jian-Guo. Energy deposition and electron-ion energy partition of energetic ions in dense plasmas. Acta Physica Sinica, 2025, 74(9): . doi: 10.7498/aps.74.20241763
    [2] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [3] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [4] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] Xiao De-Long, Dai Zi-Huan, Sun Shun-Kai, Ding Ning, Zhang Yang, Wu Ji-Ming, Yin Li, Shu Xiao-Jian. Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion. Acta Physica Sinica, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [6] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [7] Chen Peng-Wei, Li Yan-Zhong, Li Cui, Dai Fei, Ding Lan, Xin Yi. Numerical simulation of dynamic thermal characteristics of cryogenic target. Acta Physica Sinica, 2017, 66(19): 190702. doi: 10.7498/aps.66.190702
    [8] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [9] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [10] Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect. Acta Physica Sinica, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [11] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [12] Li Ze-Long, Zhong Zhe-Qiang, Zhang Bin. Study on multi-beam superposition using complementary polarization control plates. Acta Physica Sinica, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [13] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [14] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [15] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [16] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [17] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [18] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [19] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [20] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
Metrics
  • Abstract views:  7545
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2019
  • Accepted Date:  19 December 2019
  • Published Online:  20 March 2020

/

返回文章
返回