Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-coherece laser based lens array beam smoothing techique

Gao Yan-Qi Zhao Xiao-Hui Jia Guo Li Fu-Jian Cui Yong Rao Da-Xing Ji Lai-Lin Liu Dong Feng Wei Huang Xiu-Guang Ma Wei-Xin Sui Zhan

Citation:

Low-coherece laser based lens array beam smoothing techique

Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan
PDF
HTML
Get Citation
  • The experimental study of laser-driven material state equation puts forward extremely high requirements for the uniformity and stability of the target spot intensity distribution, and these two characteristics greatly determine the accuracy and repeatability of the experimental results. In this paper, a beam smoothing scheme combining diffraction-weakened lens array (LA) with induced spatial incoherent (ISI) technique based on low-coherence laser is proposed to solve the problems, that is, the uniformity and stability of the target spot intensity distribution in the material state equation experiments driven with narrow-band coherent laser. The super-Gaussian soft aperture used in our scheme can improve the intensity fluctuation caused by the hard-edge diffraction of the lens elements, and the temporal smoothing technique, ISI, can reduce the interference effect between the lens array elements. The speckle patterns of target spot, which are caused by interference between beamlets and determine the high nonuniformity, will randomly reconstruct after each coherent time. The high-frequency components are further smoothed by the time-average effect. In broadband high-power laser devices, ISI can be combined with LA by making the lens elements with different thickness values. This scheme can enhance the focal spot uniformity and improve the tolerance of the system to the wavefront phase distortion. The influence of wavefront phase distortion on target surface uniformity and stability are analyzed. The simulation results show that this smoothing scheme significantly reduces the target spot nonuniformity, improves the tolerance of random wavefront phase distortion, and presents a uniform and stable target spot intensity distribution. The nonuniformity of target spot will be reduced to about 10% after 10 ps, and about 3% after 100 ps. In addition, statistical analysis shows that the peak-to-valley value and the nonuniformity of the target spot intensity distribution are strongly correlated with the gradient of root-mean-square of the wavefront phase distortion. Using this method, the tolerance range of the wavefront phase distortion can be given according to the requirements of the experiments, which has reference value for designing and optimizing the laser driver parameters in the state equation experiment.
      Corresponding author: Zhao Xiao-Hui, xhzhao_silp@163.com
    • Funds: Project supported by the Science Challenge Project,China (Grant No. TZ2016005), and the National Natural Science Foundation of China (Grant Nos. 11604317, 11604318, 11804321).
    [1]

    Lin Y, Kessler T, Lawrence G 1996 Opt. Lett. 21 1703Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 3377

    [4]

    江秀娟, 李菁辉, 朱俭, 林尊琪 2015 物理学报 64 054201Google Scholar

    Jiang X J, Li J H, Zhu J, Lin Z Q 2015 Acta Phys. Sin. 64 054201Google Scholar

    [5]

    周冰洁, 钟哲强, 张彬 2012 物理学报 61 214002

    Zhou B J, Zhong Z Q, Zhang B 2012 Acta Phys. Sin. 61 214002

    [6]

    Skupsky S, Short R, Kessler T, Craxton R, Letzring S, Soures J 1989 J. Appl. Phys. 66 3456Google Scholar

    [7]

    Skupsky S, Craxton R, Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157Google Scholar

    [8]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725Google Scholar

    [9]

    Obenschain S, Grun J, Herbst M, Kearney K, Manka C, McLean E, Mostovych A, Stamper A, Whitlock R, Bodner S, Gardner J, Lehmberg R 1986 Phys. Rev. Lett. 56 2807Google Scholar

    [10]

    Obenschain S, BodnerS, Colombant D, Gerber K, Lehmberg R, McLean E, Mostovych A, Pronko M, Pawley C, Schmitt A, Sethian J, Serlin V, Stamper J, Sullivan C 1996 Phys. Plasmas 3 5

    [11]

    Rothenberg J 2000 J. Appl. Phys. 87 3654Google Scholar

    [12]

    Wang Y C, Wang F, Zhang Y, Huang X X, Hu D X, Zheng W G, Zhu R H, Deng X W 2017 Appl. Opt. 56 8087Google Scholar

    [13]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [14]

    Weng X F, Li T F, Zhong Z Q, Zhang B 2017 Appl. Opt. 56 8902Google Scholar

    [15]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K, Manes K, Marshall C, Mehta N, Menapace J, Moses E, Murray J, Nostrand M, Orth C, Patterson R, Sacks R, Shaw M, Spaeth M, Sutton S, Williams W, Widmayer C, White R, Yang S, Wonterghem B 2007 Appl. Opt. 46 3276Google Scholar

    [16]

    Jiang X J, Li J H, Li H G, Li Y, Lin Z Q 2011 Appl. Opt. 50 5213Google Scholar

    [17]

    江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪 2012 物理学报 61 124202Google Scholar

    Jiang X J, Li J H, Li H G, Zhou S L, Li Y, Lin Z Q 2012 Acta Phys. Sin. 61 124202Google Scholar

    [18]

    Zhou S L, Lin Z Q, Jiang X J 2007 Opt. Commun. 272 186Google Scholar

    [19]

    陈泽尊, 向春, 邓锡铭 1985 中国激光 13 65Google Scholar

    Chen Z Z, Xiang C, Deng X M 1985 Chin. J. Las. 13 65Google Scholar

    [20]

    Regan S, Marozas J, Kelly J, Boehly T, Donaldson W, Jaanimagi P, Keck R, Kessler T, Meyerhofer D, Seka W 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

  • 图 1  阵列透镜及束匀滑装置示意图

    Figure 1.  Diagram of lens array and the beam smoothing scheme.

    图 2  阵列透镜匀滑靶面光强分布

    Figure 2.  Intensity distribution of target spot after lens array smoothing.

    图 3  (a), (b)相邻发次状态方程的实验结果; (c)曲线为对应突出靶后界面的时间分布曲线

    Figure 3.  (a) and (b) Are the adjacent experimental results of state equation, and the curves in (c) are the time distributions of back of the target.

    图 5  滤波后不同波前误差对应靶面强度分布的对比

    Figure 5.  Comparison of the target intensity distribution corresponding to the different wavefronts after filtering.

    图 4  波前畸变造成的焦斑分布不均匀性及差异性 上排为波前相位理想分布及波前畸变, 下排为对应的焦斑强度分布

    Figure 4.  The nonuniformity and difference of the focal spot distributions caused by wavefront distortion. The upper row is the ideal distribution of the wavefront phase and the wavefront distortion, and the lower row is the focal spot intensity distribution, respectively.

    图 6  仅采用阵列透镜匀滑时, 焦斑光强分布与波前相位畸变统计特性之间的关系

    Figure 6.  Relationship of the statistical characteristics of target intensity distributions and that of the wavefront phase distortions, with only the lens array used for smoothing.

    图 7  焦斑不均匀度随匀滑时间的变化关系的理论与模拟结果对比

    Figure 7.  The relationship of target spot nonuniformity versus smoothing time: theory and simulation results.

    图 8  不同波前误差, 消衍射阵列透镜联合ISI束匀滑方案焦斑光强分布对比

    Figure 8.  The target spots smoothed by diffraction-weakened LA and ISI with different wavefront distortion.

    图 9  消衍射阵列透镜联合ISI束匀滑后, 焦斑光强分布与波前相位畸变统计特性之间的关系

    Figure 9.  Relationship of the statistical characteristics of target intensity distributions and that of the wavefront phase distortions, with diffraction-weakened LA and ISI used for smoothing.

    表 1  不同波前相位畸变, 焦斑不均匀度随匀滑时间的变化

    Table 1.  The nonuniformity of target at different smoothing time with different wavefront distortion.

    T($\tau $)1101001000Inf
    $ \sigma ({\phi _0})$0.97160.34230.09560.03030.0060
    $ \sigma ({\phi _1})$1.02670.32090.10120.03320.0118
    $ \sigma ({\phi _2})$0.93740.30420.09890.03450.0158
    DownLoad: CSV
  • [1]

    Lin Y, Kessler T, Lawrence G 1996 Opt. Lett. 21 1703Google Scholar

    [2]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M, Yamanaka C 1984 Phys. Rev. Lett. 53 1057Google Scholar

    [3]

    Deng X M, Liang X C, Chen Z Z, Yu W Y, Ma R Y 1986 Appl. Opt. 25 3377

    [4]

    江秀娟, 李菁辉, 朱俭, 林尊琪 2015 物理学报 64 054201Google Scholar

    Jiang X J, Li J H, Zhu J, Lin Z Q 2015 Acta Phys. Sin. 64 054201Google Scholar

    [5]

    周冰洁, 钟哲强, 张彬 2012 物理学报 61 214002

    Zhou B J, Zhong Z Q, Zhang B 2012 Acta Phys. Sin. 61 214002

    [6]

    Skupsky S, Short R, Kessler T, Craxton R, Letzring S, Soures J 1989 J. Appl. Phys. 66 3456Google Scholar

    [7]

    Skupsky S, Craxton R, Skupsky S, Craxton R S 1999 Phys. Plasmas 6 2157Google Scholar

    [8]

    Miyaji G, Miyanaga N, Urushihara S, Suzuki K, Matsuoka S, Nakatsuka M 2002 Opt. Lett. 27 725Google Scholar

    [9]

    Obenschain S, Grun J, Herbst M, Kearney K, Manka C, McLean E, Mostovych A, Stamper A, Whitlock R, Bodner S, Gardner J, Lehmberg R 1986 Phys. Rev. Lett. 56 2807Google Scholar

    [10]

    Obenschain S, BodnerS, Colombant D, Gerber K, Lehmberg R, McLean E, Mostovych A, Pronko M, Pawley C, Schmitt A, Sethian J, Serlin V, Stamper J, Sullivan C 1996 Phys. Plasmas 3 5

    [11]

    Rothenberg J 2000 J. Appl. Phys. 87 3654Google Scholar

    [12]

    Wang Y C, Wang F, Zhang Y, Huang X X, Hu D X, Zheng W G, Zhu R H, Deng X W 2017 Appl. Opt. 56 8087Google Scholar

    [13]

    Zhong Z Q, Hou P C, Zhang B 2015 Opt. Lett. 40 5850Google Scholar

    [14]

    Weng X F, Li T F, Zhong Z Q, Zhang B 2017 Appl. Opt. 56 8902Google Scholar

    [15]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K, Manes K, Marshall C, Mehta N, Menapace J, Moses E, Murray J, Nostrand M, Orth C, Patterson R, Sacks R, Shaw M, Spaeth M, Sutton S, Williams W, Widmayer C, White R, Yang S, Wonterghem B 2007 Appl. Opt. 46 3276Google Scholar

    [16]

    Jiang X J, Li J H, Li H G, Li Y, Lin Z Q 2011 Appl. Opt. 50 5213Google Scholar

    [17]

    江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪 2012 物理学报 61 124202Google Scholar

    Jiang X J, Li J H, Li H G, Zhou S L, Li Y, Lin Z Q 2012 Acta Phys. Sin. 61 124202Google Scholar

    [18]

    Zhou S L, Lin Z Q, Jiang X J 2007 Opt. Commun. 272 186Google Scholar

    [19]

    陈泽尊, 向春, 邓锡铭 1985 中国激光 13 65Google Scholar

    Chen Z Z, Xiang C, Deng X M 1985 Chin. J. Las. 13 65Google Scholar

    [20]

    Regan S, Marozas J, Kelly J, Boehly T, Donaldson W, Jaanimagi P, Keck R, Kessler T, Meyerhofer D, Seka W 2000 J. Opt. Soc. Am. B 17 1483Google Scholar

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Li Bin, Liu Zhan-Jun, Hao Liang, Zheng Chun-Yang, Cai Hong-Bo, He Min-Qing. Numerical simulation of beam deflection for smoothed laser beams. Acta Physica Sinica, 2020, 69(7): 075201. doi: 10.7498/aps.69.20191639
    [3] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [4] Deng Wan-Tao, Zhao Gang, Xia Hui-Jun, Zhang Mao, Yang Yi-Fan. Method of correcting tilt aberration for array laser of incoherent combination. Acta Physica Sinica, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [5] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [6] Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng. Analysis of laser diode array pump coupling system based on microlens array. Acta Physica Sinica, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [7] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [8] Li Fu-Jian, Gao Yan-Qi, Zhao Xiao-Hui, Ji Lai-Lin, Wang Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan, Pei Wen-Bing. Near-field character and improvement technology of induced spatial incoherence. Acta Physica Sinica, 2018, 67(17): 175201. doi: 10.7498/aps.67.20180533
    [9] Wang Zhen-Fu, Yang Guo-Wen, Wu Jian-Yao, Song Ke-Chang, Li Xiu-Shan, Song Yun-Fei. High-power, high-efficiency 808 nm laser diode array. Acta Physica Sinica, 2016, 65(16): 164203. doi: 10.7498/aps.65.164203
    [10] Jiang Xiu-Juan, Li Jing-Hui, Zhu Jian, Lin Zun-Qi. Study on a zooming optical system based on simple lens array used for laser uniform irradiation. Acta Physica Sinica, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [11] Zhong Zhe-Qiang, Zhou Bing-Jie, Ye Rong, Zhang Bin. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion. Acta Physica Sinica, 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
    [12] Li Ping, Wang Wei, Zhao Run-Chang, Geng Yuan-Chao, Jia Huai-Ting, Su Jing-Qin. Polarization smoothing design for improving the whole spatial frequency at focal spot. Acta Physica Sinica, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [13] Zhou Bing-Jie, Zhong Zhe-Qiang, Zhang Bin. Influence of beam moving characteristics on smoothing effect of focal spot. Acta Physica Sinica, 2012, 61(21): 214202. doi: 10.7498/aps.61.214202
    [14] Yuan Zhi-Lin, Yang Rui, Yang Liu, Song Li-Dan, Sun Li-Ping, Ma Yu-Hong, Wang Meng, Chen Ding-Kang, Guo Jin-Ping, Tang Li-Hong. Study of collimator array based on single collimating lens. Acta Physica Sinica, 2012, 61(18): 184217. doi: 10.7498/aps.61.184217
    [15] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [16] Jiang Xiu-Juan, Li Jing-Hui, Li Hua-Gang, Zhou Shen-Lei, Li Yang, Lin Zun-Qi. Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion. Acta Physica Sinica, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] Xiao Fa-Jun, Zhang Peng, Liu Sheng, Zhao Jian-Lin. Coherent interactions between discrete spatial solitons in light-induced planar waveguide arrays. Acta Physica Sinica, 2008, 57(4): 2529-2536. doi: 10.7498/aps.57.2529
    [20] XU ZHI-ZHAN, LI-AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, YIN GUANG-YU, HOU XING-FA. A SIX-BEAM HIGH POWER NEODYMIUM GLASS LASER. Acta Physica Sinica, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
Metrics
  • Abstract views:  8241
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2018
  • Accepted Date:  14 February 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回