Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-field character and improvement technology of induced spatial incoherence

Li Fu-Jian Gao Yan-Qi Zhao Xiao-Hui Ji Lai-Lin Wang Wei Huang Xiu-Guang Ma Wei-Xin Sui Zhan Pei Wen-Bing

Citation:

Near-field character and improvement technology of induced spatial incoherence

Li Fu-Jian, Gao Yan-Qi, Zhao Xiao-Hui, Ji Lai-Lin, Wang Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan, Pei Wen-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.
      Corresponding author: Gao Yan-Qi, liufenggyq@siom.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005) and the National Natural Science Foundation of China (Grant Nos. 1263236, 0968895, 1102301, 11404308).
    [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1] Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu. Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil. Acta Physica Sinica, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [2] Zhu Jun-Gao, Lu Hai-Yang, Zhao Yuan, Lai Mei-Fu, Gu Yong-Li, Xu Shi-Xiang, Zhou Cang-Tao. Beamline design with weak-focusing magnetic field for applications of laser-driven proton beams. Acta Physica Sinica, 2022, 71(19): 194102. doi: 10.7498/aps.71.20220599
    [3] Hao Ge-Yang, Yang Yu-Cheng, Zhao Rong-Juan, Lü Xiao-Peng, Yang Ya-Han, Wu Guo-Jun. Velocity history measurement of hypersonic tunnel driver based on photon Doppler velocimeter. Acta Physica Sinica, 2022, 71(23): 234208. doi: 10.7498/aps.71.20221234
    [4] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [5] Li Bin, Liu Zhan-Jun, Hao Liang, Zheng Chun-Yang, Cai Hong-Bo, He Min-Qing. Numerical simulation of beam deflection for smoothed laser beams. Acta Physica Sinica, 2020, 69(7): 075201. doi: 10.7498/aps.69.20191639
    [6] Gao Yan-Qi, Zhao Xiao-Hui, Jia Guo, Li Fu-Jian, Cui Yong, Rao Da-Xing, Ji Lai-Lin, Liu Dong, Feng Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan. Low-coherece laser based lens array beam smoothing techique. Acta Physica Sinica, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [7] Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia. Single-shot incoherent digital holography based on spatial light modulator. Acta Physica Sinica, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [8] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [9] Tang Xiong-Xin, Qiu Ji-Si, Fan Zhong-Wei, Wang Hao-Cheng, Liu Yue-Liang, Liu Hao, Su Liang-Bi. Experimental study of diode-pumped Nd, Y:CaF2 amplifier for inertial confinement fusion laser driver. Acta Physica Sinica, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [10] Jiang Xiu-Juan, Li Jing-Hui, Zhu Jian, Lin Zun-Qi. Study on a zooming optical system based on simple lens array used for laser uniform irradiation. Acta Physica Sinica, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [11] Zhong Zhe-Qiang, Zhou Bing-Jie, Ye Rong, Zhang Bin. A novel scheme of beam smoothing using multi-central frequency and multi-color smoothing by spectral dispersion. Acta Physica Sinica, 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
    [12] Li Ping, Wang Wei, Zhao Run-Chang, Geng Yuan-Chao, Jia Huai-Ting, Su Jing-Qin. Polarization smoothing design for improving the whole spatial frequency at focal spot. Acta Physica Sinica, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [13] Zhou Bing-Jie, Zhong Zhe-Qiang, Zhang Bin. Influence of beam moving characteristics on smoothing effect of focal spot. Acta Physica Sinica, 2012, 61(21): 214202. doi: 10.7498/aps.61.214202
    [14] Jiang Xiu-Juan, Li Jing-Hui, Li Hua-Gang, Zhou Shen-Lei, Li Yang, Lin Zun-Qi. Smoothing of small on-target spots produced by frequency-tripled beams using lens array and spectral dispersion. Acta Physica Sinica, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [15] Yang Wei-Qiang, Hou Jing, Song Rui, Liu Ze-Jin. Theoretical analysis of two-stage pumping technology for high power fiber lasers. Acta Physica Sinica, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [16] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] WANG GUI-YING, ZHAO JIO-YIAN, ZHANG MING-KE, FAN DIAN-YIAN, GUI ZHAI-QUAN. BASIC STUDY ON SPATIAL FILTER USED IN Nd-GLASS HIGH POWER LASER SYSTEM. Acta Physica Sinica, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
    [20] XU ZHI-ZHAN, LI-AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, YIN GUANG-YU, HOU XING-FA. A SIX-BEAM HIGH POWER NEODYMIUM GLASS LASER. Acta Physica Sinica, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
Metrics
  • Abstract views:  5740
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2018
  • Accepted Date:  23 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回