搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究

唐熊忻 邱基斯 樊仲维 王昊成 刘悦亮 刘昊 苏良碧

引用本文:
Citation:

用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究

唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧

Experimental study of diode-pumped Nd, Y:CaF2 amplifier for inertial confinement fusion laser driver

Tang Xiong-Xin, Qiu Ji-Si, Fan Zhong-Wei, Wang Hao-Cheng, Liu Yue-Liang, Liu Hao, Su Liang-Bi
PDF
导出引用
  • 对Nd,Y:CaF2晶体作为激光放大器的增益介质进行了报道.研制了一台采用激光二极管面阵五向水平侧面抽运5 mm70 mm Nd,Y:CaF2的激光放大器,对其进行了实验研究.测量了Nd,Y:CaF2晶体的吸收谱、发射谱、以及放大器的荧光分布.在相同的抽运功率下,测量了Nd,Y:CaF2与Nd:Glass放大器分别工作在10 Hz和1 Hz重复频率时的小信号增益,在抽运功率为9.63 kW时,Nd,Y:CaF2放大器的小信号增益达6.12,为Nd:Glass的1.5倍.与Nd:Glass相比,Nd,Y:CaF2晶体的重复工作频率不仅大大提高,而且增益性能也更强.测量了种子光和经Nd,Y:CaF2放大器后的光谱,能量放大前后光谱几乎无变化.
    In a conventional laser-driven inertial confinement fusion (ICF), Nd-doped phosphate glass is used as a gain medium. However, the repetition frequency operation of such a laser system is restricted by the low thermal conductivity of the phosphate glass. To attain a high ICF performance, the laser driver must be able to operate at a repetition frequency of no less than 10 Hz. Typically, an Nd-doped laser glass operates at a repetition frequency well below 10 Hz. In this paper, an Nd, Y:CaF2 crystal is taken as a gain medium for the laser amplifier, and experiments are carried out to demonstrate the capability of Nd, Y:CaF2 crystal to act as a gain medium for ICF laser driver. A laser-diode plane-array five-direction horizontal-side-pumped Nd, Y:CaF2 laser amplifier 5 mm70 mm is developed and an experimental study is carried out. The absorption spectrum and emission spectrum of Nd, Y:CaF2 crystal and the fluorescence distribution of the amplifier are measured. The Nd:CaF2 co-doped with Y3+ ions results in a broad absorption band, which makes the laser diode pumping more efficient. The strongest excitation band peak is centered around 796 nm. The small signal gains of Nd, Y:CaF2 and Nd:Glass working respectively at repetition frequencies of 10 and 1 Hz under the same pump power are measured. The small signal gain of Nd, Y:CaF2 amplifier reaches 6.12 under a pump power of 9.63 kW, which is 1.5 times that of Nd:Glass amplifier. The measurements of the spectrum of the seed beam and the spectrum from Nd, Y:CaF2 amplifier show that the signals have no change before and after being amplified. Most likely the Nd, Y:CaF2 crystal is a promising laser material for repetitive ICF laser drivers.
      通信作者: 邱基斯, keith0311@163.com;fanzhongwei@aoe.ac.cn ; 樊仲维, keith0311@163.com;fanzhongwei@aoe.ac.cn
    • 基金项目: 国家重大科研仪器设备研制专项(批准号:ZDYZ2013-2)、科技部创新人才推进计划重点领域创新团队(批准号:2014RA4051)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Qiu Ji-Si, keith0311@163.com;fanzhongwei@aoe.ac.cn ; Fan Zhong-Wei, keith0311@163.com;fanzhongwei@aoe.ac.cn
    • Funds: Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. ZDYZ2013-2), the Innovative Talent Promotion Plans for Innovation Team in Priority Fields, China (Grant No. 2014RA4051), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
    [1]

    Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Lett. 19 14223

    [2]

    Peng Y J, Wang J F, Zhang Z X, Huang D J, Fan W, Li X C 2014 Chin. Opt. Lett. 12 41402

    [3]

    Krupke W F, Shinn M D, Marion J E, Caird J A, Stokowski S E 1986 J. Opt. Soc. Am. B 3 102

    [4]

    Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photon. Sin. 45 114001 (in Chinese)[张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军2016光子学报45 114001]

    [5]

    Su L B, Yang W Q, Dong Y J, Zhou S M, Zhou G Q, Xu J 2003 J. Synth. Cryst. 32 476 (in Chinese)[苏良碧, 杨卫桥, 董永军, 周圣明, 周国清, 徐军2003人工晶体学报32 476]

    [6]

    Mirela N 2000 J. Cryst. Growth 218 62

    [7]

    Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B. 8 726

    [8]

    Fernandez J, Oleaga A, Azkargorta J, Iparraguirre I, Balda R, Voda M, Kaminskii A A 1999 Opt. Mater. 13 9

    [9]

    Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge 2013 J. Opt. Soc. Am. B 30 3018

    [10]

    Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804

    [11]

    Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737

    [12]

    Zhu J F, Zhang L J, Gao Z Y, Wang J L, Wang Z H, Su L B, Zheng L H, Wang J Y, Xu J, Wei Z Y 2015 Laser Phys. Lett. 12 035801

    [13]

    Zhang Q, Su L B, Jiang D P, Ma F K, Qin Z P, Xie G Q, Zheng J G, Deng Q H, Zheng W G, Qian L J, Xu J 2015 Chin. Opt. Lett. 13 71402

  • [1]

    Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Lett. 19 14223

    [2]

    Peng Y J, Wang J F, Zhang Z X, Huang D J, Fan W, Li X C 2014 Chin. Opt. Lett. 12 41402

    [3]

    Krupke W F, Shinn M D, Marion J E, Caird J A, Stokowski S E 1986 J. Opt. Soc. Am. B 3 102

    [4]

    Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photon. Sin. 45 114001 (in Chinese)[张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军2016光子学报45 114001]

    [5]

    Su L B, Yang W Q, Dong Y J, Zhou S M, Zhou G Q, Xu J 2003 J. Synth. Cryst. 32 476 (in Chinese)[苏良碧, 杨卫桥, 董永军, 周圣明, 周国清, 徐军2003人工晶体学报32 476]

    [6]

    Mirela N 2000 J. Cryst. Growth 218 62

    [7]

    Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B. 8 726

    [8]

    Fernandez J, Oleaga A, Azkargorta J, Iparraguirre I, Balda R, Voda M, Kaminskii A A 1999 Opt. Mater. 13 9

    [9]

    Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge 2013 J. Opt. Soc. Am. B 30 3018

    [10]

    Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804

    [11]

    Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737

    [12]

    Zhu J F, Zhang L J, Gao Z Y, Wang J L, Wang Z H, Su L B, Zheng L H, Wang J Y, Xu J, Wei Z Y 2015 Laser Phys. Lett. 12 035801

    [13]

    Zhang Q, Su L B, Jiang D P, Ma F K, Qin Z P, Xie G Q, Zheng J G, Deng Q H, Zheng W G, Qian L J, Xu J 2015 Chin. Opt. Lett. 13 71402

  • [1] 刘坚, 刘军芳, 苏良碧, 张倩, 马凤凯, 姜大朋, 徐军. Gd3+/Y3+共掺对Nd:CaF2晶体光谱性能的影响. 物理学报, 2016, 65(5): 054207. doi: 10.7498/aps.65.054207
    [2] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用. 物理学报, 2016, 65(12): 128401. doi: 10.7498/aps.65.128401
    [3] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [4] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展. 物理学报, 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [5] 刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬. 开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究. 物理学报, 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [6] 何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥. 脊加载曲折波导行波管注波互作用的线性理论研究. 物理学报, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [7] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [8] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [9] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [10] 林万涛, 莫嘉琪, 张伟江, 陈贤峰. 激光脉冲放大器增益通量的广义变分迭代解法. 物理学报, 2008, 57(8): 4641-4645. doi: 10.7498/aps.57.4641
    [11] 鄢 然, 罗 勇, 李家胤, 蒲友雷, 王建勋, 雷朝军, 刘迎辉. Kα波段介质加载回旋行波管小信号分析与设计. 物理学报, 2008, 57(1): 460-466. doi: 10.7498/aps.57.460
    [12] 路志刚, 宫玉彬, 魏彦玉, 王文祥. 介质加载矩形波导栅行波管的小信号增益计算. 物理学报, 2007, 56(12): 6931-6936. doi: 10.7498/aps.56.6931
    [13] 陈 芳, 曾健华, 周建英. 周期排列共振放大介质的小信号增益特性研究. 物理学报, 2007, 56(7): 4175-4179. doi: 10.7498/aps.56.4175
    [14] 朱洪涛, 楼祺洪, 漆云凤, 董景星, 魏运荣. LD侧面抽运Nd:YAG陶瓷激光器运转条件下归一化热参数优化理论及实验研究. 物理学报, 2006, 55(10): 5221-5226. doi: 10.7498/aps.55.5221
    [15] 叶云霞, 余柯涵, 钱列加, 范滇元, 彭 波. Nd3+螯合物的含氢有机溶液光谱性能研究. 物理学报, 2006, 55(12): 6424-6429. doi: 10.7498/aps.55.6424
    [16] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. 激光脉冲放大器的增益通量曲线研究. 物理学报, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [17] 张华, 范滇元. 组合式钕玻璃片状激光放大器增益性能的动态模拟. 物理学报, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
    [18] 李 雅, 陈玲燕, 张 哲, 吴永刚, 乔 轶, 徐炜新. XPS研究Nd表面氧化物的生长过程. 物理学报, 2001, 50(1): 79-82. doi: 10.7498/aps.50.79
    [19] 王 涛, 陈清明, 毛代胜. 磁约束放电CO激光模型. 物理学报, 2000, 49(12): 2369-2373. doi: 10.7498/aps.49.2369
    [20] 孙军强, 黄德修, 易河清. 基于半导体激光放大器增益饱和的波长转换的小信号分析. 物理学报, 1997, 46(12): 2369-2375. doi: 10.7498/aps.46.2369
计量
  • 文章访问数:  3412
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 修回日期:  2016-07-31
  • 刊出日期:  2016-10-05

用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究

  • 1. 中国科学院光电研究院, 北京 100094;
  • 2. 国家半导体泵浦激光工程技术研究中心, 北京 100094;
  • 3. 中科和光(天津)应用激光技术研究所有限公司, 天津 300304;
  • 4. 中国科学院上海硅酸盐研究所人工晶体研究中心, 上海 201899;
  • 5. 中国科学院透明光功能无机材料重点实验室, 上海 201899
  • 通信作者: 邱基斯, keith0311@163.com;fanzhongwei@aoe.ac.cn ; 樊仲维, keith0311@163.com;fanzhongwei@aoe.ac.cn
    基金项目: 国家重大科研仪器设备研制专项(批准号:ZDYZ2013-2)、科技部创新人才推进计划重点领域创新团队(批准号:2014RA4051)和中国科学院青年创新促进会资助的课题.

摘要: 对Nd,Y:CaF2晶体作为激光放大器的增益介质进行了报道.研制了一台采用激光二极管面阵五向水平侧面抽运5 mm70 mm Nd,Y:CaF2的激光放大器,对其进行了实验研究.测量了Nd,Y:CaF2晶体的吸收谱、发射谱、以及放大器的荧光分布.在相同的抽运功率下,测量了Nd,Y:CaF2与Nd:Glass放大器分别工作在10 Hz和1 Hz重复频率时的小信号增益,在抽运功率为9.63 kW时,Nd,Y:CaF2放大器的小信号增益达6.12,为Nd:Glass的1.5倍.与Nd:Glass相比,Nd,Y:CaF2晶体的重复工作频率不仅大大提高,而且增益性能也更强.测量了种子光和经Nd,Y:CaF2放大器后的光谱,能量放大前后光谱几乎无变化.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回