Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil

Feng Kai-Yuan Shao Fu-Qiu Jiang Xiang-Rui Zou De-Bin Hu Li-Xiang Zhang Guo-Bo Yang Xiao-Hu Yin Yan Ma Yan-Yun Yu Tong-Pu

Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu. Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil. Acta Phys. Sin., 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
Citation: Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu. Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil. Acta Phys. Sin., 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706

Ultrashort pulsed neutron source driven by two counter-propagating laser pulses interacting with ultra-thin foil

Feng Kai-Yuan, Shao Fu-Qiu, Jiang Xiang-Rui, Zou De-Bin, Hu Li-Xiang, Zhang Guo-Bo, Yang Xiao-Hu, Yin Yan, Ma Yan-Yun, Yu Tong-Pu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Neutron production via D(d, n)3He nuclear reaction during the interaction of two counter-propagating circularly polarized laser pulses with ultra-thin deuterium target is investigated by particle-in-cell simulation and Monte Carlo method. It is found that the rotation direction and initial relative phase difference of laser electric field vector have important effects on deuterium foil compression and neutron characteristics. The reason is attributed to the net light pressure and the difference in transverse instability development. The highest neutron yield can be obtained by choosing two laser pulses with a relative phase difference of 0 and the same rotation direction of the electric field vector. When the relative phase difference is 0.5π or 1.5π and the rotation direction of electric field vector is different, the neutrons have a directional spatial distribution and the neutron yield only slightly decreases. For left-handed circularly polarized laser pulse and right-handed circularly polarized laser pulse, each with an intensity of 1.23 × 1021 W/cm2, a pulse width of 33 fs and a relative phase difference of 0.5π, it is possible to produce a pulsed neutron source with a yield of 8.5 × 104 n, production rate of 1.2 × 1019 n/s, pulse width of 23 fs and good forward direction as well as tunable spatial distribution. Comparing with photonuclear neutron source and beam target neutron source driven by ultraintense laser pulses, the duration of neutron source in our scheme decreases significantly, thereby possessing many potential applications such as neutron nuclear data measurement. Our scheme offers a possible method to obtain a compact neutron source with short pulse width, high production rate and good forward direction.
      Corresponding author: Zou De-Bin, debinzou@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175310, 12275356, U22411281), the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ20042), the Youth Innovation Award of NUDT (Grant No. 20190102), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20210006).

    中子呈电中性, 具有穿透性强的特点, 是研究物质结构和动力学性质的理想探针. 常用的中子源包括同位素中子源、中子管中子源、加速器中子源、反应堆中子源和散裂中子源等. 散裂中子源是新一代的脉冲式高通量白光中子源, 通量高达1017 n·cm–2·s–1量级, 脉宽可短至百ns量级[1], 成为物理、化学、生物、材料以及能源研究等基础科学研究的重要科学平台. 为了实现更高的时空分辨, 研究人员仍然在不断探寻更高通量、更短脉宽的中子源.

    强激光驱动的中子源是伴随超强超短激光技术而发展起来的新型中子源技术, 具有焦斑小、脉宽短和峰值通量高等优点, 在中子照相、材料无损分析、核截面测量以及核合成等研究领域展现出重要的应用价值[2-6]. 针对不同的激光和靶条件, 研究人员已提出多种强激光驱动中子源方案, 包括聚变中子源[7-11]、团簇中子源[12,13]、束靶中子源[14-17]和光核中子源[18-24]等. 目前, 依托这些方案实验证实已可获得脉宽短至ns甚至几十ps的高通量中子源[25]. 为产生脉宽更短、强度更高的中子源, 沈百飞等[26]和张晓梅等[27]结合一维动力学稳态模型, 提出了双束对射飞秒激光驱动超薄靶的短脉冲中子源方案[23]及其基于预形成通道的改进模型[27]. 随后, Macchi[28]利用一维数值模拟证实这种构型获得的高能量密度离子束通过碰撞可产生脉宽短至fs量级、产额约103 n/J的聚变中子源. 然而, 以上研究仅限于一维情况, 无法考虑横向不稳定性等高维效应的影响[26]. 近来, 胡理想等[29]研究了二维情况下基于双锥构型的激光氘离子加速及中子产生过程, 发现锥形通道实现激光脉冲的有效导引、聚焦和强度放大, 大幅提升了氘离子的能量密度和中子体产生率. 不过该方案中锥顶直径仅1个激光波长, 与超薄靶横向不稳定性发展的特征空间尺度相当[3032], 所以并未观察到横向不稳定性对靶压缩过程及中子产生的影响.

    本文采用粒子模拟方法和蒙特卡罗方法, 研究了二维环境下双束圆极化激光压缩氘靶并通过氘氘核反应产生中子的细致物理过程, 模拟发现, 由于激光净光压和横向不稳定性发展的差异, 激光电场矢量旋转方向和初始相对相位差对于氘(D+)离子的能谱、空间分布产生较大影响. 相同激光强度下, 通过调整激光电场矢量旋转方向和相对相位差可以实现中子产额和空间分布的调控. 使用强度为1.23 × 1021 W/cm2、脉宽为33 fs、相对相位差为0.5π的左旋光和右旋光, 获得了产额为8.5 × 104 n、强度为1.2 × 1019 n/s、脉宽为23 fs、前冲性较好且分布可调谐的脉冲中子源.

    通过使用二维粒子模拟(particle-in-cell, PIC)程序EPOCH[33]对激光与氘靶相互作用动力学进行数值模拟. 设置模拟盒子x方向的长度为36 μm, y方向的高度为24 μm, 空间分辨率为0.02 μm, 每个网格放置100个粒子. 氘靶位于模拟盒子的中央, 其高度h = 24 μm, 厚度d = 0.1 μm, 靶前表面距离模拟盒子左边界的长度d1 = 17.95 μm. 氘靶是由完全电离的氘等离子体所组成, 氘(D+)离子和电子的数密度均为50nc, 其中nc=meω20/meω204πe24πe2是等离子体的临界密度, ω0是激光频率, eme分别是电子电荷和静止质量. 两束波长为λ0=1 μm的圆极化激光从模拟盒左右边界沿x轴方向垂直入射, 同时到达氘靶前后表面. 两束激光的归一化振幅可表示为

    a=a0sin2(πt/πt2τL2τL)exp(r2/r2σ2Lσ2L)×[(sinϕ)ˆey±(cosϕ)ˆez],
    (1)

    式中a0=eE0/(meωLc)=152, E0为激光最大电场幅值, ωL为激光角频率, c为在真空中的光速; 激光焦斑半径σL=6 μm, 脉宽τL=10T0, 其中激光周期T0=3.3 fs; “±”号分别代表圆极化激光的左旋和右旋; ϕ代表激光的相位. 对于相位为ϕ1ϕ2的双束激光, 初始相对相位差由Δϕ=ϕ1ϕ2给出. 图1展示了Δϕ=0,0.5π,π,1.5π时左旋(LCP, 激光电场矢量Er沿x方向顺时针旋转)和右旋(RCP, 激光电场矢量Er沿 –x方向逆时针旋转)圆极化激光与氘靶相互作用示意图, 其中k代表坡印亭矢量.

    图 1 双束对射圆极化激光与超薄氘靶相互作用示意图, 其中红色曲线包络代表右旋光, 蓝色曲线包括代表左旋光, $ k $代表坡印亭矢量 (a)—(d) 代表一束右旋光与一束左旋光的情况(RCP+LCP); (e)—(h) 代表两束右旋光的情况(RCP+RCP), 从左至右初始相对相位差$ \Delta \phi $依次为$ 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi $\r\nFig. 1. Schematic diagram of two counter-propagating circularly polarized laser pulses interacting with ultrathin deuterium target: (a)–(d) The cases of a left-rotating light and a right-rotating light (RCP+LCP); (e)–(h) the cases of two right-rotating light (RCP+RCP). From left to right, the initial relative phase difference $ \Delta \phi $ is $ 0, {\text{ }}0.5{\text{π }}, {\text{ }}\pi , {\text{ }}1.5\pi $, respectively. Here, red and blue curves represent the right- and left-rotating light and $ k $is Poynting vector.
    图 1  双束对射圆极化激光与超薄氘靶相互作用示意图, 其中红色曲线包络代表右旋光, 蓝色曲线包括代表左旋光, k代表坡印亭矢量 (a)—(d) 代表一束右旋光与一束左旋光的情况(RCP+LCP); (e)—(h) 代表两束右旋光的情况(RCP+RCP), 从左至右初始相对相位差Δϕ依次为0, 0.5π, π, 1.5π
    Fig. 1.  Schematic diagram of two counter-propagating circularly polarized laser pulses interacting with ultrathin deuterium target: (a)–(d) The cases of a left-rotating light and a right-rotating light (RCP+LCP); (e)–(h) the cases of two right-rotating light (RCP+RCP). From left to right, the initial relative phase difference Δϕ is 0, 0.5π , π, 1.5π, respectively. Here, red and blue curves represent the right- and left-rotating light and kis Poynting vector.

    当双束圆极化激光与超薄氘靶相互作用时, 氘离子在靶压缩过程中将会发生碰撞, 从而诱发D(d, n)3He核反应产生大量中子. 本文使用课题组开发的蒙特卡罗后处理程序PICNP[16,29]模拟中子产生过程. 程序每间隔一段时间(本文选择1个激光周期)从PIC模拟数据中获取离子位置和速度信息, 根据位置分配到不同网格, 然后对每个网格内离子进行随机抽样并两两配对, 计算得到每对离子对产生中子的信息[16,34]. 通过核反应产生中子是一个随机过程, 网格内不同氘离子之间发生核反应产生中子的概率不尽相同, 因此程序中采用随机抽样来计算中子产率, 然后进行统计平均获得中子产额等信息, 这也是当前蒙特卡罗程序在模拟中子产生过程时普遍采用的思想. 以D(d, n)3He核反应为例, 利用PIC程序中输出的D+离子速度v1v2, 可以求出D+碰撞离子的相对速度v=|v1v2|、碰撞中心的质量能εr=mrv2/mrv222, 以及参量η=(Mn+MHe)(MHeMD+MHeQ/εr)/(MDMn), 式中MD为氘核质量. 以角度θn(相对于氘氘碰撞方向)出射的中子的能量为[16,35,36]

    εn=MDMn(Mn+MHe)2εr(η+cos2θn+cosθn)2,
    (2)

    其中mr=mDmD/mDmD(mD+mD)(mD+mD)=mD/mD22是约化质量; mD, MnMHe分别是D+离子、中子和氦核质量, Q=3.266MeV是反应能. 通过对微分反应截面进行插值, 得到每个碰撞能εn与微分截面的映射关系, 这样就可通过σ=(dσ/dΩ)dΩ计算得到反应总截面σ, 其中dΩ为立体角, D(d, n)3He反应的微分截面dσ/dΩ可通过数据库查询[37]. 每个网格对应的中子体产生率为Rn=n2Dσv/n2Dσv22, 式中nD为氘离子密度, 再对网格体积进行积分得到中子产生率Pn=RndV, 中子产额也可以通过Nn=Pndt计算得到. 根据(2)式和微分截面数据也能得到中子的能量分布与角分布.

    图2(a)(h) 给出相对相位差Δϕ和电场矢量Er旋转方向不同(RCP+LCP)情况下PIC模拟获得的t=32T0时刻的电子和D+离子密度分布. 从图2(a)(h)可以看到, 对于Er旋转方向不同的对射光, 当Δϕ=0.5π1.5π时, 氘靶被明显地向右和向左推动, 而在Δϕ=π时几乎在初始位置保持不动. 这是因为双束对射激光作用于薄靶时, 净光压P可表示为[26]

    图 2 $ t = 32{T_0} $时, 不同电场矢量$ {\boldsymbol{E}}_{\text{r}} $旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $情况下, 电子((a)—(d)和(i)—(l))和D+离子((e)—(h)和(m)—(p))的密度空间分布, 其中(a)—(h)和(i)—(p)分别代表RCP+LCP和RCP+RCP的情况\r\nFig. 2. Spatial distributions of both electrons ((a)–(d) and (i)–(l)) and ions ((e)–(h) and (m)–(p)) for different rotation direction of electric fields $ {\boldsymbol{E}}_{\text{r}} $ and initial relative phase $ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at $ t = 32{T_0} $. Here, (a)—(h) and (i)—(p) represent the cases of RCP+LCP and RCP+RCP, respectively.
    图 2  t=32T0时, 不同电场矢量Er旋转方向和不同初始相对相位差(Δϕ=0, 0.5π, π, 1.5π)情况下, 电子((a)—(d)和(i)—(l))和D+离子((e)—(h)和(m)—(p))的密度空间分布, 其中(a)—(h)和(i)—(p)分别代表RCP+LCP和RCP+RCP的情况
    Fig. 2.  Spatial distributions of both electrons ((a)–(d) and (i)–(l)) and ions ((e)–(h) and (m)–(p)) for different rotation direction of electric fields Er and initial relative phase (Δϕ=0, 0.5π, π, 1.5π) at t=32T0. Here, (a)—(h) and (i)—(p) represent the cases of RCP+LCP and RCP+RCP, respectively.
    P=P1[Δϕ+P2sin(Δϕ)],
    (3)

    其中P1(>0)P2(>0)是由入射激光的强度、靶厚度和数密度确定的常数, 与Δϕ无关. 当Δϕ=0.5π, π, 1.5π时, P将分别大于、等于或小于0, 导致氘靶被向右推动、保持不动和被向左推动. 然而, 当Δϕ=0时, 尽管P=0, 但由于靶被压缩至与趋附深度相当的厚度时, 两束激光的透射光将会相互交叠而组合成一束线极化光, 其有质动力含有振荡项成分, J × B电子加热将起到主导作用, 横向不稳定性发展迅速[38,39], 靶遭到破坏且其中心区域呈现典型的半波长横向周期分布. 对于电场旋转方向相同的对射光(即RCP+RCP情况), 电子和离子密度如图2(i)(p)所示. 这里仅给出两束右旋光情况, 两束左旋光情况与此类似. 该情形下并不存在电子的纵向速度消失时的稳态解, 薄靶受到两束激光的净光压恒为0, 靶未发生左右移动而呈现细丝状的对称分布, 激光与薄靶相互作用将会呈现更强的非线性特性. 与上述情况类似, Δϕ=0时横向不稳定性的发展最为剧烈, 而在Δϕ=π时发展最为缓慢, 不稳定性的增长率与靶打穿后叠加的电场强度密切相关.

    图3给出了双束对射激光与薄膜靶相互作用过程中t=50T0时刻的电子和D+离子能谱分布, 此时激光等离子体相互作用已基本结束. 从图3可以看到, 对于RCP+LCP的情况, 由于在Δϕ=0时横向不稳定性的发展最为剧烈, 超热电子温度最高, D+离子的加速也最为充分, 其D+离子截止能量可达35.1 MeV, 从图2(a)图2(e)可以明显观察到周期状的细丝结构, 且固体靶呈现出明显的向左运动的现象. 而对于另外三种情况, 净光压不同导致最终离子加速效果存在差异. 对于RCP+RCP时不存在稳态解的情况, 可以看到, 由于P0, Δϕ=0, 0.5π, 1.5π时几乎呈现相同的电子能谱分布, 仅电子截止能量依次稍有降低, D+离子温度和截止能量也呈现相同的下降趋势. 需要注意的是, Δϕ=π时的电子加热和离子加速效果低于其余三种情况, 这是由于横向不稳定性导致靶的破坏, 部分电子仅感受到电场矢量方向相反的等强度对射激光电场的作用, 如图2(k)所示, 电子加热效应被明显抑制, 电子和D+离子密度分布中的细丝结构几乎消失.

    图 3 不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $情况下, $ t = 50{T_0} $时电子((a), (b))和D+离子((c), (d))的能谱分布 (a), (c) RCP+LCP; (b), (d) RCP+RCP\r\nFig. 3. Spectral distributions of (a), (b) electrons and (c), (d) ions for the cases of different rotation direction of the electric fields $ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ (\Delta \phi = 0, {\text{ }}0.5\pi , {\text{ }}\pi , {\text{ }}1.5\pi ) $ at $ t = 50{T_0} $: (a), (c) RCP+LCP; (b), (d) RCP+RCP.
    图 3  不同电场矢量Er旋转方向和不同初始相对相位差(Δϕ=0, 0.5π, π, 1.5π)情况下, t=50T0时电子((a), (b))和D+离子((c), (d))的能谱分布 (a), (c) RCP+LCP; (b), (d) RCP+RCP
    Fig. 3.  Spectral distributions of (a), (b) electrons and (c), (d) ions for the cases of different rotation direction of the electric fields Er of two counter-propagating laser pulses and their initial relative phase (Δϕ=0, 0.5π, π, 1.5π) at t=50T0: (a), (c) RCP+LCP; (b), (d) RCP+RCP.

    (2)式表明, 出射中子能量与核反应过程中D+离子的相对速度密切相关. 综合不同激光电场矢量旋转方向和初始相对相位差情况下的电子、D+离子的密度和能谱分布, 可以初步判断, 无论是RCP+LCP还是RCP+RCP情况, Δϕ=0时中子的产额和能量最高. 虽然Δϕ=π时D+离子能量较低, 然而由于该条件下净光压为0, D+离子的相对速度v=|v1v2|较高且D+离子容易被压缩至更高的密度nD. 根据D(d, n)3He核反应的中子体产生率[16]:

    Rn2.72×1014n2D1+0.0054T0.97DT2/3Dexp(19.8T1/3D).
    (4)

    中子产额并非最低, 其中TD是D+离子的温度. 考虑到RCP+LCP情况下Δϕ=0.5π1.5π时D+离子获得较稳定的加速, 前向与侧向的中子产额比可能最高, 这非常有利于提升峰值中子通量.

    利用PICNP程序计算不同时刻的中子产生率Pn、中子产额Nn、角分布和能谱分布. 图4(a)(h)给出不同Δϕ情况下t=32T0时中子产生率的空间分布. 与图2对比发现, 中子产生率分布与D+离子密度的空间分布保持较好一致性, RCP + RCP情况下中子产生率呈现较好的对称性, 其中心区域出现周期性的结构, 而在RCP+LCP情况下Δϕπ时, 中子产生率均呈现非对称分布. 现统计t=50T0时不同情况下中子的累计产额分布, 如图4(i)(p)所示. 令人感兴趣的是, 对于RCP+LCP情况, Δϕ=π/2时几乎所有的中子都分布在右侧, 而Δϕ=3π/2时, 中子都集中在靶左侧. 因此, 可以通过调整对射激光电场矢量旋转方向和初始相对相位差实现中子空间分布的调控.

    图 4 不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 32{T_0} $时刻的中子产生率$ {P_{\text{n}}} $ ((a)—(h))和$ t = 50{T_0} $时的总中子产额$ {N_{\text{n}}} $分布((i)—(p))\r\nFig. 4. Spatial distributions of (a)–(h) neutron production rate $ {P_{\text{n}}} $ at $ t = 32{T_0} $ and (i)–(p) total neutron yield $ {N_{\text{n}}} $ at $ t = 50{T_0} $ in the cases of different rotation direction of electric fields $ {{{\boldsymbol E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.
    图 4  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=32T0时刻的中子产生率Pn ((a)—(h))和t=50T0时的总中子产额Nn分布((i)—(p))
    Fig. 4.  Spatial distributions of (a)–(h) neutron production rate Pn at t=32T0 and (i)–(p) total neutron yield Nn at t=50T0 in the cases of different rotation direction of electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ.

    中子源的脉宽是衡量中子源品质的重要参量之一, 不同脉宽的中子源具有不同的应用价值. 图5(a)图5(b)给出不同情况下Pn随时间的演化. 从图5(a)图5(b)可以看到, Pn随时间的演化趋势基本一致, 呈现明显的双峰结构. 原因在于, 在t=25T0时, 在圆极化对射激光的光压作用下, 氘离子密度被压缩至最高且相对速度较大, 该阶段可认为是薄靶对称压缩阶段, 此时出现Pn的第一个峰值. 然而, 伴随着横向不稳定性的发展和靶的变形, nD开始降低. 在t=30T0时, 由于薄靶两侧的净光压不再相等, 靶被继续向左推动, 激光焦斑区域内几乎所有的D+离子离开了靶初始所在区域, D+离子能量不断提升. 由于D+离子平均能量(即温度TD)的提升, 根据方程(4), 中子反应率也会逐渐提升. 在t=32T0时刻后, D+离子横向振荡的细丝结构已非常明显, t=35T0时薄靶几乎已被击穿. 此时nD降低的幅度相对于TD增加的幅度更大, 导致Pn再一次降低, 出现Pn的第二个峰值. 整体看来, 双束对射激光驱动中子源的脉宽约几十fs, 相对于激光驱动的光核中子源和束靶中子源[2,3](通常在几十ps至百ns之间)更短. 这是因此该方案不需要光核中子源和束靶中子源中的转换体, 不涉及电子束和离子束在转换体中传输时的时间展宽过程, 中子伴随着激光与等离子体相互作用或D+离子的加速同时产生. 如此短脉冲的中子源将具有更高的时间或能量分辨率, 在中子核数据测量等领域具有重要的应用潜力. 值得注意的是, 对于RCP+RCP时的Δϕ=0情况, Pn的第二个峰值大于第一个峰值的大小, 最大的中子产生率达到1.2 × 1019 n/s. 这是由于此时D+离子的温度约1.1 MeV, 接近DD反应中Pn达到最大值时的最佳温度1.25 MeV, 而其余几种情况下D+离子温度均低于0.6 MeV.

    图 5 不同电场矢量$ {{{\boldsymbol E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, 中子产生率$ {P_{\text{n}}} $ ((a), (b))和总中子产额$ {N_{\text{n}}} $ ((c), (d))随时间的演化\r\nFig. 5. Temporal evolutions of (a), (b) neutron production rate $ {P_{\text{n}}} $ and (c), (d) total neutron yield $ {N_{\text{n}}} $ in the cases of different rotation direction of electric fields $ {{{\boldsymbol E}}_{\text{r}}} $of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.
    图 5  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, 中子产生率Pn ((a), (b))和总中子产额Nn ((c), (d))随时间的演化
    Fig. 5.  Temporal evolutions of (a), (b) neutron production rate Pn and (c), (d) total neutron yield Nn in the cases of different rotation direction of electric fields Erof two counter-propagating laser pulses and their initial relative phase Δϕ.

    图5(c)图5(d)展示出不同情况下Nn随时间的演化. 与图5(a)图5(b)一致, t=23T0时中子开始产生, t=35T0时激光与靶相互作用基本完毕后开始进入饱和状态(此时, D+离子不会立刻降温, 中子仍可继续产生, 只不过Pn相比于之前降低近3个数量级, 对于Nn影响不大). 当Δϕ=0时, Nn最高, 这是由于D+离子的能量越大, 碰撞D+离子的相对速度v=|v1v2|出现最大的概率越大. 对于RCP+LCP情况, 虽然不同Δϕ时D+离子的能量差异较大, 然而由于Δϕ0时D+离子的相对速度和密度较高, Nn相差并不大, 而对于RCP+RCP的情况, 从图5(d)可以看到, Δϕ=0.5π1.5π 情况下的Nn的确相差不大, 大约为7×104个, 而当Δϕ=0π 时, Nn分别为1.37 × 105和1.1 × 105, 提升接近2倍. 当Δϕ=0时, 两种情况下的Nn均是最高的, 分别达到9.1 × 104和1.37 × 105. 值得注意的是, 对于RCP+LCP情况, 当Δϕ=π/π223π/3π22时, 不仅Nn处于较高的水平, 而且中子的左右分布具有一定的选择性. 对于强度为1.23 × 1021 W/cm2、脉宽为33 fs、能量为46 J且相对相位差为0.5π的左旋光和右旋光, 可以获得产额为8.5 × 104 n、产生率为1.2 × 1019 n/s、脉宽为23 fs的脉冲中子源.

    图6给出t=50T0时不同Er旋转方向和不同Δϕ情况下的中子能谱分布. 对于RCP + LCP情况, 最高中子能量随Δϕ的变化与图3(c)中在D+离子截止能量变化趋势保持一致. Δϕ=0时, 中子能量分布范围更广, 主要位于2.45—13.2 MeV之间, 相同能量时的中子数目几乎均最高. 对于RCP+RCP情况, 除Δϕ=π外其余三种情况中子能量范围几乎相同, 最高中子能量约14 MeV; 而当Δϕ=π时, 最高中子能量最低, 仅为10.4 MeV, 但低能中子数目更多, 最高能量的变化趋势与图3(d)中在D+离子截止能量变化趋势几乎相同.

    图 6 不同电场矢量$ {{\boldsymbol{E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 50{T_0} $时的中子能谱 (a) RCP+LCP; (b) RCP+RCP\r\nFig. 6. Spectra of the emitted neutrons at $ t = 50{T_0} $ in the cases of different rotation direction of the electric fields $ {{\boldsymbol{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $: (a) RCP+LCP; (b) RCP+RCP.
    图 6  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=50T0时的中子能谱 (a) RCP+LCP; (b) RCP+RCP
    Fig. 6.  Spectra of the emitted neutrons at t=50T0 in the cases of different rotation direction of the electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ: (a) RCP+LCP; (b) RCP+RCP.

    使用微分截面进行计算, 可得到t=25T0t=50T0时刻的中子角分布特征, 如图7所示. 从图7以发现, 对于RCP+LCP情况, 中子在从0°到360°的各个方向均有分布, 这种沿各个方向发射的各向同性的中子起源于化合物反应[6]. 通过统计沿0°和90°的中子产额, 能够获得前向与侧向中子产额比约3∶1, 意味着中子源具有较高的前冲性, 这主要由裂解、剥离和预平衡反应产生的强正向或负向中子发射导致[6]. 需要指明的是, 尽管Δϕ=π/π22Δϕ=3π/3π22时中子的空间位置分布主要集中在右侧或左侧, 但这仅体现了中子的产生位置, 由于激光驱动的D+离子几乎都在靶前方或后方, 因此中子的产生位置具有一定的取向性. 中子角分布与D+离子的空间分布并没有直接关联. (2)式中的角度是中子出射方向与D+离子碰撞方向(随机抽取的两个D+离子的相对速度方向)的夹角, 通过加上D+离子碰撞方向来获得实验室坐标系下中子的角分布. 因此中子角分布主要由D+离子间相对速度方向决定, 而不是与D+离子束的角分布直接相关. 对于定向运动的D+离子束, 随机抽样的两个D+离子的相对速度方向并不一定与氘离子束的整体运动方向相同, 也有一定概率为其反方向, 因此中子角分布呈现前后对称分布的特征. 对于RCP+RCP情况, 可以看到, 在t=25T0时刻的中子分布与图7(a)几乎一致, 不过由于Δϕ=π时相对速度v=|v1v2|和靶被压缩后的密度较大, 且不稳定性发生较为缓慢(如图2(k)图2(o)), 其中子角分布曲线分布在最外围. 由于Δϕ=0时横向不稳定性发展最为剧烈, D+离子能量更高(见图3(d)), 在t=50T0时刻中子产额变得更高, 即图7(d)中粉色曲线大于红色实线所围面积. 此外, 由于不稳定性导致D+离子空间分布呈现一定的随机性, 如图2(m)所示, 导致最终中子角分布呈现几乎是各向同性的.

    图 7 不同电场矢量$ {{{E}}_{\text{r}}} $旋转方向和不同初始相对相位差$ \Delta \phi $情况下, $ t = 25{T_0} $ (a), (b)和$ t = 50{T_0} $ (c)和(d)时刻的中子角分布\r\nFig. 7. Angular distributions of the accumulated neutrons at $ t = 25{T_0} $ (a), (b) and $ t = 50{T_0} $ (c), (d) in the cases of different rotation direction of electric fields $ {{{E}}_{\text{r}}} $ of two counter-propagating laser pulses and their initial relative phase $ \Delta \phi $.
    图 7  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=25T0 (a), (b)和t=50T0 (c)和(d)时刻的中子角分布
    Fig. 7.  Angular distributions of the accumulated neutrons at t=25T0 (a), (b) and t=50T0 (c), (d) in the cases of different rotation direction of electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ.

    需要指明的是, 双束激光与超薄靶相互作用是三维情形, 仅仅通过全三维数值模拟才可真实再现涉及的物理过程. 不过, 先前为了认识超强圆极化激光与单层薄靶相互作用的基本特征, 大多数激光辐射压离子加速及不稳定性的相关研究[3032,3841]均在二维条件下开展, 实验结果[4244]也证实了二维结果的可靠性. 考虑到所讨论内容的复杂性以及全三维大尺度模拟所需计算资源的问题, 以上模拟研究仅限于二维情形. 在三维情况下, 先前研究结果[4547]表明, 激光与薄靶相互作用中横向不稳定性的发展规律以及离子加速效果相对于二维情形均展现一定的差异. 对于双束激光与超薄靶相互作用的情形, 类似的差异以及实验条件下的激光预脉冲对于中子源特征的影响需要进一步评估.

    利用粒子模拟方法和蒙特卡罗方法研究了双束对射圆极化激光与超薄氘靶的相互作用动力学以及D(d, n)3He核反应产生中子的过程, 给出了激光电场矢量旋转方向和初始相对相位差对氘靶压缩及中子特性的影响规律. 结果表明, 选择相对相位差为0且电场矢量旋转方向相同的对射光, 可实现最高的中子产额; 而对于电场矢量旋转方向不同的对射光, 可以通过调整其相对相位差为0.5π或1.5π实现中子分布的方向调控. 在强度1.23 × 1021 W/cm2、脉宽33 fs、能量46 J的激光脉冲条件下, 模拟证实可产生产额为8.5 × 104 n、产生率为1.2 × 1019 n/s、 脉宽为23 fs且前冲性较好的脉冲中子源, 脉宽相对于强激光驱动光核中子源和束靶中子源大幅降低, 在中子核数据测量等领域具有一定的应用潜力. 研究结果有望对实验获得短脉宽、高产率、前冲性好的紧凑型中子源提供参考.

    [1]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [2]

    夏江帆, 张杰 2000 物理 29 270Google Scholar

    Xia J F, Zhang J 2000 Physics 29 270Google Scholar

    [3]

    Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar

    [4]

    Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar

    [5]

    Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar

    [6]

    Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar

    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [8]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [9]

    Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar

    [10]

    Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar

    [11]

    Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar

    [12]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar

    [13]

    Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar

    [14]

    Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar

    [15]

    Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar

    [16]

    Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar

    [17]

    崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar

    Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar

    [18]

    Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471

    [19]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [20]

    Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar

    [21]

    Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar

    [22]

    Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar

    [23]

    Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar

    [24]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103

    [25]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [26]

    Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar

    [27]

    Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar

    [28]

    Macchi A 2006 Appl. Phys. B 82 337Google Scholar

    [29]

    Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar

    [30]

    Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar

    [31]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [32]

    Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar

    [33]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [34]

    Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar

    [35]

    Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar

    [36]

    Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar

    [37]

    Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar

    [38]

    Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar

    [39]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [40]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar

    [41]

    Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002

    [42]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [43]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar

    [44]

    Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar

    [45]

    Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar

    [46]

    Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar

    [47]

    Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar

    期刊类型引用(1)

    1. Zhiyu Lei,Hanghang Ma,Xiaobo Zhang,Lin Yu,Yihang Zhang,Yutong Li,Suming Weng,Min Chen,Jie Zhang,Zhengming Sheng. Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap. Matter and Radiation at Extremes. 2024(05): 28-37 . 必应学术

    其他类型引用(0)

  • 图 1  双束对射圆极化激光与超薄氘靶相互作用示意图, 其中红色曲线包络代表右旋光, 蓝色曲线包括代表左旋光, k代表坡印亭矢量 (a)—(d) 代表一束右旋光与一束左旋光的情况(RCP+LCP); (e)—(h) 代表两束右旋光的情况(RCP+RCP), 从左至右初始相对相位差Δϕ依次为0, 0.5π, π, 1.5π

    Figure 1.  Schematic diagram of two counter-propagating circularly polarized laser pulses interacting with ultrathin deuterium target: (a)–(d) The cases of a left-rotating light and a right-rotating light (RCP+LCP); (e)–(h) the cases of two right-rotating light (RCP+RCP). From left to right, the initial relative phase difference Δϕ is 0, 0.5π , π, 1.5π, respectively. Here, red and blue curves represent the right- and left-rotating light and kis Poynting vector.

    图 2  t=32T0时, 不同电场矢量Er旋转方向和不同初始相对相位差(Δϕ=0, 0.5π, π, 1.5π)情况下, 电子((a)—(d)和(i)—(l))和D+离子((e)—(h)和(m)—(p))的密度空间分布, 其中(a)—(h)和(i)—(p)分别代表RCP+LCP和RCP+RCP的情况

    Figure 2.  Spatial distributions of both electrons ((a)–(d) and (i)–(l)) and ions ((e)–(h) and (m)–(p)) for different rotation direction of electric fields Er and initial relative phase (Δϕ=0, 0.5π, π, 1.5π) at t=32T0. Here, (a)—(h) and (i)—(p) represent the cases of RCP+LCP and RCP+RCP, respectively.

    图 3  不同电场矢量Er旋转方向和不同初始相对相位差(Δϕ=0, 0.5π, π, 1.5π)情况下, t=50T0时电子((a), (b))和D+离子((c), (d))的能谱分布 (a), (c) RCP+LCP; (b), (d) RCP+RCP

    Figure 3.  Spectral distributions of (a), (b) electrons and (c), (d) ions for the cases of different rotation direction of the electric fields Er of two counter-propagating laser pulses and their initial relative phase (Δϕ=0, 0.5π, π, 1.5π) at t=50T0: (a), (c) RCP+LCP; (b), (d) RCP+RCP.

    图 4  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=32T0时刻的中子产生率Pn ((a)—(h))和t=50T0时的总中子产额Nn分布((i)—(p))

    Figure 4.  Spatial distributions of (a)–(h) neutron production rate Pn at t=32T0 and (i)–(p) total neutron yield Nn at t=50T0 in the cases of different rotation direction of electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ.

    图 5  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, 中子产生率Pn ((a), (b))和总中子产额Nn ((c), (d))随时间的演化

    Figure 5.  Temporal evolutions of (a), (b) neutron production rate Pn and (c), (d) total neutron yield Nn in the cases of different rotation direction of electric fields Erof two counter-propagating laser pulses and their initial relative phase Δϕ.

    图 6  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=50T0时的中子能谱 (a) RCP+LCP; (b) RCP+RCP

    Figure 6.  Spectra of the emitted neutrons at t=50T0 in the cases of different rotation direction of the electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ: (a) RCP+LCP; (b) RCP+RCP.

    图 7  不同电场矢量Er旋转方向和不同初始相对相位差Δϕ情况下, t=25T0 (a), (b)和t=50T0 (c)和(d)时刻的中子角分布

    Figure 7.  Angular distributions of the accumulated neutrons at t=25T0 (a), (b) and t=50T0 (c), (d) in the cases of different rotation direction of electric fields Er of two counter-propagating laser pulses and their initial relative phase Δϕ.

  • [1]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [2]

    夏江帆, 张杰 2000 物理 29 270Google Scholar

    Xia J F, Zhang J 2000 Physics 29 270Google Scholar

    [3]

    Alvarez J, Fernández-Tobias J, Mima K, Nakai S, Kar S, Kato Y, Perlado J M 2014 Physics Procedia 60 29Google Scholar

    [4]

    Chen S N, Negoita F, Spohr K, d’Humières E, Pomerantz I, Fuchs J 2019 Matter Radiat. Extremes 4 054402Google Scholar

    [5]

    Günther M M, Rosmej O N, Tavana P, Gyrdymov M, Skobliakov A, Kantsyrev A, Zähter S, Borisenko N G, Pukhov A, Andreev N E 2022 Nat. Commun. 13 170Google Scholar

    [6]

    Zimmer M, Scheuren S, Kleinschmidt A, Mitura N, Tebartz A, Schaumann G, Abel T, Ebert T, Hesse M, Zähter Ş, Vogel S C, Merle O, Ahlers R J, Duarte Pinto S, Peschke M, Kröll T, Bagnoud V, Rödel C, Roth M 2022 Nat. Commun. 13 1173Google Scholar

    [7]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, Rose S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [8]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [9]

    Ren G, Yan J, Liu J, Lan K, Chen Y H, Huo W Y, Fan Z, Zhang X, Zheng J, Chen Z, Jiang W, Chen L, Tang Q, Yuan Z, Wang F, Jiang S, Ding Y, Zhang W, He X T 2017 Phys. Rev. Lett. 118 165001Google Scholar

    [10]

    Curtis A, Calvi C, Tinsley J, Hollinger R, Kaymak V, Pukhov A, Wang S, Rockwood A, Wang Y, Shlyaptsev V N, Rocca J J 2018 Nat. Commun. 9 1077Google Scholar

    [11]

    Labaune C, Baccou C, Depierreux S, Goyon C, Loisel G, Yahia V, Rafelski J 2013 Nat. Commun. 4 2506Google Scholar

    [12]

    Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G, Wharton K B 1999 Nature 398 489Google Scholar

    [13]

    Lu H Y, Liu J S, Wang C, Wang W T, Zhou Z L, Deng A H, Xia C Q, Xu Y, Lu X M, Jiang Y H, Leng Y X, Liang X Y, Ni G Q, Li R X, Xu Z Z 2009 Phys. Rev. A 80 051201Google Scholar

    [14]

    Roth M, Jung D, Falk K, Guler N, Deppert O, Devlin M, Favalli A, Fernandez J, Gautier D, Geissel M, Haight R, Hamilton C E, Hegelich B M, Johnson R P, Merrill F, Schaumann G, Schoenberg K, Schollmeier M, Shimada T, Taddeucci T, Tybo J L, Wagner F, Wender S A, Wilde C H, Wurden G A 2013 Phys. Rev. Lett. 110 044802Google Scholar

    [15]

    Mirfayzi S R, Alejo A, Ahmed H, Raspino D, Ansell S, Wilson L A, Armstrong C, Butler N M H, Clarke R J, Higginson A, Kelleher J, Murphy C D, Notley M, Rusby D R, Schooneveld E, Borghesi M, McKenna P, Rhodes N J, Neely D, Brenner C M, Kar S 2017 Appl. Phys. Lett. 111 044101Google Scholar

    [16]

    Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B, Zhou C T 2020 Nucl. Fusion 60 076019Google Scholar

    [17]

    崔波, 张智猛, 戴曾海, 齐伟, 邓志刚, 黄华, 贺书凯, 王为武, 滕建, 张博, 刘红杰, 陈家斌, 肖云青, 吴笛, 马文君, 洪伟, 粟敬钦, 周维民, 谷渝秋 2021 强激光与粒子束 33 123Google Scholar

    Cui B, Zhang Z M, Dai Z H, Qi W, Deng Z G, Huang H, He S K, Wang W W, Teng J, Zhang B, Liu H J, Chen J B, Xiao Y Q, Wu D , Ma W J, Hong W, Su J Q, Zhou W M, Gu Y Q 2021 High Power Laser Part. Beams 33 123Google Scholar

    [18]

    Shkolnikov P L, Kaplan A E, Pukhov A, Meyer-ter-Vehn J 1997 Appl. Phys. Lett. 71 3471

    [19]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [20]

    Arikawa Y, Utsugi M, Alessio M, Nagai T, Abe Y, Kojima S, Sakata S, Inoue H, Fujioka S, Zhang Z, Chen H, Park J, Williams J, Morita T, Sakawa Y, Nakata Y, Kawanaka J, Jitsuno T, Sarukura N, Miyanaga N, Nakai M, Shiraga H, Nishimura H, Azechi H 2015 Plasma Fusion Res 10 2404003Google Scholar

    [21]

    Jiao X J, Shaw J M, Wang T, Wang X M, Tsai H, Poth P, Pomerantz I, Labun L A, Toncian T, Downer M C, Hegelich B M 2017 Matter Radiat. Extremes 2 296Google Scholar

    [22]

    Feng J, Fu C, Li Y, Zhang X, Wang J, Li D, Zhu C, Tan J, Mirzaie M, Zhang Z, Chen L 2020 High Energy Density Phys. 36 100753Google Scholar

    [23]

    Jiang X R, Zou D B, Zhao Z J, Hu L X, Han P, Yu J Q, Yu T P, Yin Y, Shao F Q 2021 Phys. Rev. Appl. 15 034032Google Scholar

    [24]

    Qi W, Zhang X H, Zhang B, He S K, Zhang F, Cui B, Yu M H, Dai Z H, Peng X Y, Gu Y Q 2019 Phys. Plasmas 26 043103

    [25]

    Pomerantz I, McCary E, Meadows A R, Arefiev A, Bernstein A C, Chester C, Cortez J, Donovan M E, Dyer G, Gaul E W, Hamilton D, Kuk D, Lestrade A C, Wang C, Ditmire T, Hegelich B M 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [26]

    Shen B F, Meyer-ter-Vehn J 2001 Phys. Plasmas 8 1003Google Scholar

    [27]

    Zhang X M, Shen B F 2006 J. Plasma Phys. 72 635Google Scholar

    [28]

    Macchi A 2006 Appl. Phys. B 82 337Google Scholar

    [29]

    Hu L X, Yu T P, Shao F Q, Zhu Q J, Yin Y, Ma Y Y 2015 Phys. Plasmas 22 123104Google Scholar

    [30]

    Pegoraro F and Bulanov S V 2007 Phys. Rev. Lett. 99 065002Google Scholar

    [31]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001Google Scholar

    [32]

    Wan Y, Pai C H, Zhang C J, Li F, Wu Y P, Hua J F, Lu W, Gu Y Q, Silva L O, Joshi C, Mori W B 2016 Phys. Rev. Lett. 117 234801Google Scholar

    [33]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108 165006Google Scholar

    [34]

    Wu D, Sheng Z M, Yu W, Fritzsche S, He X T 2021 AIP Advances 11 075003Google Scholar

    [35]

    Deng H X, Sha R, Hu L X, Jiang X R, Zhao N, Zou D B, Yu T P, Shao F Q 2022 Plasma Phys. Controlled Fusion 64 085004Google Scholar

    [36]

    Toupin C, Lefebvre E, Bonnaud G 2001 Phys. Plasmas 8 1011Google Scholar

    [37]

    Liskien H, Paulsen A 1973 At. Data Nucl. Data Tables 11 569Google Scholar

    [38]

    Macchi A, Cattani F, Liseykina T V, Cornolti F 2005 Phys. Rev. Lett. 94 165003Google Scholar

    [39]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003Google Scholar

    [40]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Li X M, Wen M, Cary J R 2008 Phys. Rev. Lett. 101 164802Google Scholar

    [41]

    Qiao B, Kar S, Geissler M, Gibbon P, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 108 115002

    [42]

    Henig A, Steinke S, Schnürer M, Sokollik T, Hörlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W, Habs D 2009 Phys. Rev. Lett. 103 245003Google Scholar

    [43]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X H, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006Google Scholar

    [44]

    Palmer C A J, Schreiber J, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Spindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002Google Scholar

    [45]

    Zhang X M, Shen B F, Ji L L, Wang W P, Xu J C, Yu Y H, Wang X F 2011 Phys. Plasmas 18 073101Google Scholar

    [46]

    Sgattoni A, Sinigardi S, Macchi A 2014 Appl. Phys. Lett. 15 084105Google Scholar

    [47]

    Sgattoni A, Sinigardi S, Fedeli L, Pegoraro F, Macchi A 2015 Phys. Rev. E 91 013106Google Scholar

  • [1] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [2] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [4] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [5] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [6] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [7] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [8] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [9] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [10] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [11] Dai Zheng-Liang, Cui Wei-Jia, Wang Da-Ming, Zhang Yan-Kui. Decoupled two-dimensional direction of arrival estimation of single distributed source by vectoring differential phases. Acta Physica Sinica, 2018, 67(7): 070702. doi: 10.7498/aps.67.20172154
    [12] Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Shen Yang, Yu Ji-Bao, Fan Ya, Zhang An-Xue. A circular polarization antenna designed based on the polarization conversion metasurface. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [13] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [14] Huang Xiang-Dong, Meng Tian-Wei, Ding Dao-Xian, Wang Zhao-Hua. A novel phase difference frequency estimator based on forward and backward sub-segmenting. Acta Physica Sinica, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [15] Wang Sheng, Zou Yu-Bin, Wen Wei-Wei, Li Hang, Liu Shu-Quan, Wang Hu, Lu Yuan-Rong, Tang Guo-You, Guo Zhi-Yu. Study of coded source neutron imaging based on a compact accelerator. Acta Physica Sinica, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [16] Luo Qun, Huang Lin-Hai, Gu Nai-Ting, Li Fei, Rao Chang-Hui. Experimental study on phase diversity wavefront sensing technology in piston error detection. Acta Physica Sinica, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [17] Li Fei, Rao Chang-Hui. High resolution imaging technique based on phase diversity hybrid method. Acta Physica Sinica, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [18] Li Fei. Phase diversity image restoration. Acta Physica Sinica, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [19] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [20] Ding Hai-Bing, Pang Wen-Ning, Liu Yi-Bao, Shang Ren-Cheng. Polarization direction modulation for spin-polarized electrons with liquid crystal variable retarder. Acta Physica Sinica, 2005, 54(9): 4097-4100. doi: 10.7498/aps.54.4097
  • 期刊类型引用(1)

    1. Zhiyu Lei,Hanghang Ma,Xiaobo Zhang,Lin Yu,Yihang Zhang,Yutong Li,Suming Weng,Min Chen,Jie Zhang,Zhengming Sheng. Compact ultrafast neutron sources via bulk acceleration of deuteron ions in an optical trap. Matter and Radiation at Extremes. 2024(05): 28-37 . 必应学术

    其他类型引用(0)

Metrics
  • Abstract views:  4474
  • PDF Downloads:  190
  • Cited By: 1
Publishing process
  • Received Date:  30 April 2023
  • Accepted Date:  09 June 2023
  • Available Online:  29 June 2023
  • Published Online:  20 September 2023

/

返回文章
返回