Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-shot incoherent digital holography based on spatial light modulator

Bai Yun-He Zang Rui-Huan Wang Pan Rong Teng-Da Ma Feng-Ying Du Yan-Li Duan Zhi-Yong Gong Qiao-Xia

Citation:

Single-shot incoherent digital holography based on spatial light modulator

Bai Yun-He, Zang Rui-Huan, Wang Pan, Rong Teng-Da, Ma Feng-Ying, Du Yan-Li, Duan Zhi-Yong, Gong Qiao-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Fresnel incoherent correlation holography (FINCH) is a relatively innovative technology, which can achieve incoherent holograms by using the correlation between the object information and a Fresnel zone plate. In this method, the optical wave front scattered from an object propagates and is incident on a spatial light modulator which a phase mask is mounted on, and then the optical beam is split and phase shifted. The biggest advantage of the FINCH is that it can be matched with any standard optical imaging technology, which can realize microscopic imaging, telescopic imaging, spectroscopic imaging, etc. based on incoherent digital holography, and has important application prospect in remote sensing, astronomy, microscopy, and material analysis. In this paper, based on phase modulation characteristic of spatial light modulator, two types of masks are used. The first mask has an optical axis. And the results show that when the distribution intervals of the three phases on the spatial light modulator (SLM) are larger, the reconstruction image is clearer. On this basis, a new method of mode mounting on the SLM is put forward. The second mask has dual-lens array mode with three phases of 0°, 120°, and 240°, and the three phases respectively correspond to their corresponding optical axis, which means that the mask has three optical axes. Both of the two masks can achieve the single-shot of FINCH. By comparing the two mask forms, we find that the field-of-view of the first mask is larger, which can image the entire resolution board; however, because the sub-phase shift holograms are mixed together and cannot be extracted, the quality of the reconstructed image is worse. The second one can extract three sub-holograms, and the reconstructed image has better quality; but because of smaller imaging field of view, it is suitable for the real-time imaging of micro-organisms and objects. Experiments show that a compound digital hologram including three phase-shifting elements is recorded in charge-coupled device in this way. Three sub-holograms with different phase shift angles are extracted from the compound hologram, and there is no overlapping among the three phase shift holograms. Therefore, the three-phase-shifting technique is usually employed. The sample is reconstructed by numerical reconstruction algorithm. The proposed method may be useful in dynamic process real-time measurement and three-dimensional analysis of the object, and thus providing a new way to promote the development of incoherent digital holography.
      Corresponding author: Gong Qiao-Xia, gqx1205@zzu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Henan Province of China (Grant No. 16A140035) and the 2018 Group of Science and technology Innovation in Universities of Henan Province, China (Grant No. 18IRTSTHN016).
    [1]

    Wan Y H, Man T L, Wang D Y 2014 Opt. Express 22 8565

    [2]

    Lei X, Peng X Y, Guo Z X, Miao J M, Asundi A 2005 Opt. Express 13 2444

    [3]

    Pedrini G, Li H, Faridian A, Osten W 2012 Opt. Lett. 37 713

    [4]

    Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M, Wilke M 2014 Appl. Opt. 53 44

    [5]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244

    [7]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190

    [8]

    Katz B, Rosen J, Kelner R 2012 Opt. Express 20 9109

    [9]

    Liu Y C, Lu X X, Tao T, Zhang D S, Deng J, Wang H K, Zhang Z, Zhong L Y 2013 Asia Communications and Photon Conference Guangzhou, China, November 7-10, 2013 p14

    [10]

    Liu Y C, Fan J P, Zeng F C, L X X, Zhong L Y 2013 Chin. J. Lasers 40 239 (in Chinese) [刘英臣, 范金坪, 曾凡创, 吕晓旭, 钟丽云 2013 中国激光 40 239]

    [11]

    Wan Y H, Man T L, Tao S Q 2014 Chin. J. Lasers 41 43 (in Chinese) [万玉红, 满天龙, 陶世荃 2014 中国激光 41 43]

    [12]

    Bouchal P, Bouchal Z 2013 JEOS:RP 8 13011

    [13]

    Katz B, Rosen J 2011 Opt. Express 19 4924

    [14]

    Kashter Y, Rosen J 2014 Opt. Express 22 20551

    [15]

    Weng J W, Qin Y, Yang C P, Li H 2015 Laser Optoelect. Prog. 52 116 (in Chinese) [翁嘉文, 秦怡, 杨初平, 李海 2015 激光与光电子学进展 52 116]

    [16]

    Zhu Z Q, Wang X L, Sun M, Li L J, Feng S T, Nie S P 2009 J. Optoelect. Laser 20 1681 (in Chinese) [朱竹青, 王晓雷, 孙敏, 李璐杰, 冯少彤, 聂守平 2009 光电子 20 1681]

    [17]

    Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Lasers 42 265 (in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]

    [18]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268

    [19]

    Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Lasers 41 81 (in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]

  • [1]

    Wan Y H, Man T L, Wang D Y 2014 Opt. Express 22 8565

    [2]

    Lei X, Peng X Y, Guo Z X, Miao J M, Asundi A 2005 Opt. Express 13 2444

    [3]

    Pedrini G, Li H, Faridian A, Osten W 2012 Opt. Lett. 37 713

    [4]

    Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh A K, Takeda M, Wilke M 2014 Appl. Opt. 53 44

    [5]

    Rosen J, Brooker G 2007 Opt. Lett. 32 912

    [6]

    Rosen J, Brooker G 2007 Opt. Express 15 2244

    [7]

    Rosen J, Brooker G 2008 Nat. Photon. 2 190

    [8]

    Katz B, Rosen J, Kelner R 2012 Opt. Express 20 9109

    [9]

    Liu Y C, Lu X X, Tao T, Zhang D S, Deng J, Wang H K, Zhang Z, Zhong L Y 2013 Asia Communications and Photon Conference Guangzhou, China, November 7-10, 2013 p14

    [10]

    Liu Y C, Fan J P, Zeng F C, L X X, Zhong L Y 2013 Chin. J. Lasers 40 239 (in Chinese) [刘英臣, 范金坪, 曾凡创, 吕晓旭, 钟丽云 2013 中国激光 40 239]

    [11]

    Wan Y H, Man T L, Tao S Q 2014 Chin. J. Lasers 41 43 (in Chinese) [万玉红, 满天龙, 陶世荃 2014 中国激光 41 43]

    [12]

    Bouchal P, Bouchal Z 2013 JEOS:RP 8 13011

    [13]

    Katz B, Rosen J 2011 Opt. Express 19 4924

    [14]

    Kashter Y, Rosen J 2014 Opt. Express 22 20551

    [15]

    Weng J W, Qin Y, Yang C P, Li H 2015 Laser Optoelect. Prog. 52 116 (in Chinese) [翁嘉文, 秦怡, 杨初平, 李海 2015 激光与光电子学进展 52 116]

    [16]

    Zhu Z Q, Wang X L, Sun M, Li L J, Feng S T, Nie S P 2009 J. Optoelect. Laser 20 1681 (in Chinese) [朱竹青, 王晓雷, 孙敏, 李璐杰, 冯少彤, 聂守平 2009 光电子 20 1681]

    [17]

    Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Lasers 42 265 (in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]

    [18]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268

    [19]

    Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Lasers 41 81 (in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]

  • [1] Wang Liang-Wei, Liu Fang-De, Li Yun-Da, Han Wei, Meng Zeng-Ming, Zhang Jing. Construction of two-dimensional arbitrary shape 87Rb atomic array based on spatial light modulator. Acta Physica Sinica, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] Yu Huan-Huan, Zhang Chen-Shuang, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Two-photon multifocal structured light microscopy based on high-speed phase-type spatial light modulator. Acta Physica Sinica, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [3] Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin. A method of efficiently generating arbitrary vector beams. Acta Physica Sinica, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [4] Tang Ming-Yu, Wu Meng-Ting, Zang Rui-Huan, Rong Teng-Da, Du Yan-Li, Ma Feng-Ying, Duan Zhi-Yong, Gong Qiao-Xia. Fresnel incoherent digital holography with large field-of-view. Acta Physica Sinica, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [5] Zhao Zhong-Chao, Yang Xu-Feng, Xu Tian-Xu, He Jiu-Ru, Gong Qiao-Xiao, Du Yan-Li, Dong Lin, Yuan Bin, Ma Feng-Ying. Point spread function of incoherent digital holography based on spiral phase modulation. Acta Physica Sinica, 2018, 67(1): 014203. doi: 10.7498/aps.67.20171442
    [6] Xie Wan-Cai, Huang Su-Juan, Shao Wei, Zhu Fu-Quan, Chen Mu-Sheng. Free-space optical communication based on hybrid optical mode array encoding. Acta Physica Sinica, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [7] Xia Jun, Chang Chen-Liang, Lei Wei. Holographic display based on liquid crystal spatial light modulator. Acta Physica Sinica, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [8] Xi Si-Xing, Wang Xiao-Lei, Huang Shuai, Chang Sheng-Jiang, Lin Lie. Generation of arbitrary vector beam based on optical holography. Acta Physica Sinica, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [9] Tang Yan-Qiu, Sun Qiang, Zhao Jian, Yao Kai-Nan. A closed-loop aberration compensating method of optics system based on holography. Acta Physica Sinica, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [10] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [11] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [12] Zhao Juan-Ying, Deng Dong-Mei, Zhang Ze, Liu Jing-Jiao, Jiang Dong-Sheng. Theoretical and experimental study on self-accelerating Bessel-like Hermite-Gaussian beams. Acta Physica Sinica, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [13] Zhou Qiao-Qiao, Xu Shu-Wu, Lu Jun-Fa, Zhou Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator. Acta Physica Sinica, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [14] Xin Jing-Tao, Gao Chun-Qing, Li Chen, Wang Zheng. Propagation of helical beams through amplitude diffractive optical elements and the measurement of topological charge. Acta Physica Sinica, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [15] Gu Song-Bo, Xu Shu-Wu, Lu Jun-Fa, Ji Xian-Ming, Yin Jian-Ping. Generation of the array of optical traps by liquid crystal spatial light modulator. Acta Physica Sinica, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [16] Xu Shu-Wu, Zhou Qiao-Qiao, Gu Song-Bo, Ji Xian-Ming, Yin Jian-Ping. Generation of the three-dimensional array of optical trap by spatial light modulator. Acta Physica Sinica, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [17] Qi Xiao-Qing, Gao Chun-Qing. Experimental study of detecting orbital angular momentumstates of spiral phase beams. Acta Physica Sinica, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [18] Zheng Hua-Dong, Yu Ying-Jie, Dai Lin-Mao, Wang Tao. Correction method for phase-modulation deviation of liquid crystal spatial light modulator in full-color holographic display. Acta Physica Sinica, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [19] Ge Ai-Ming, Sui Zhan, Xu Ke-Shu. Characteristics of phase-only modulation using a reflective liquid crystal on si licon device. Acta Physica Sinica, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
    [20] DONG BI-ZHEN, CHEN ZHENG-HAO, CHEN YAN-SONG, DENG DAO-QUN, JU RUI. THE WIDE-ANGLE HOLOGRAPHY. Acta Physica Sinica, 1978, 27(4): 483-486. doi: 10.7498/aps.27.483
Metrics
  • Abstract views:  6639
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2017
  • Accepted Date:  28 November 2017
  • Published Online:  20 March 2019

/

返回文章
返回