Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing

Wei Wei-Hua Li Mu-Tian Liu Mo-Nan

Citation:

Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing

Wei Wei-Hua, Li Mu-Tian, Liu Mo-Nan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optical microcavities play a key role in both fundamental research on light-matter interaction and also applications such as integrated optics and sensors. Among them, whisper gallery mode (WGM) microcavity outstands itself by low loss, high Q-factor and high sensitivity to their dielectric environment. It can be found to have a variety of applications, including nonlinear optics, quantum electrodynamics, bio-sensors, low-threshold lasers, etc. However, the multi-mode nature of WGM microcavity is inconsistent with the basic requirements for these applications, i.e., a single-mode output and tunable wavelength. Therefore, the modulation of whisper gallery mode towards a unidirectional single-mode output is meaningful for both studying cavity dynamics and developing the above-mentioned applications. Here in this paper a brief review is carried out on the study of coupled dye-doped polymer microcavity processed by femtosecond laser direct-writing (FSLDW). The content covers fabrication, microcavity structure design, lasing and coupling mechanism study. The powerful patterning ability of FSLDW can realize complex three-dimensional microcavity structure design, which follows two schemes. One is to integrate a filter port to a microcavity. The other is to bring two or more microcavities in close proximity to each other for coupling. Based on such schemes, three kinds of microcavity structures, which are stacked microdisks, a microdisk integrated with gratings and stacked spiral-ring and circular-ring microcavity, are developed for the mode modulation. It is shown that all the three kinds of structures support unidirectional single-mode emissions with low lasing threshold. For the case of the stacked microdisks, the coupling can have a vernier effect among their modes and hence the mode selection. For the case of the microdisk cavity integrated with gratings, the gratings work as a filter port to select a certain mode according to their own period. For the case of the stacked spiral-ring and circular-ring microcavities, it is the structure asymmetry of the former that leads to the single-mode output. The mode modulations based on the mentioned microcavity structures have successfully maintained the high Q-factor of WGMs, which makes these cavities promising unidirectional single-mode microlasers. Combining with theoretical simulations, it is confirmed that the mode coupling between the microcavities (or between gratings and a microcavity) is responsible for the mode selection. Moreover, the unique structure design can break the rotational symmetry of the microcavity and hence achieve unidirectional laser emission. By careful designing and processing, successful modulationscan be achieved on a series of polymer microcavities. With both high Q-factor and good lasing directionality, these microcavity lasers could be well explored in integrated optical systems and organic optoelectronic devices.
      Corresponding author: Liu Mo-Nan, graiel@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501070).
    [1]

    Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102

    [2]

    Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39

    [3]

    Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053

    [4]

    Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911

    [5]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [6]

    Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249

    [7]

    Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113

    [8]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [9]

    Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559

    [10]

    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123

    [11]

    Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K

    [12]

    Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102

    [13]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788

    [14]

    Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447

    [15]

    Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543

    [16]

    Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605

    [17]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061

    [18]

    Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681

    [19]

    Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113

    [20]

    Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694

    [21]

    Shen X, Cui T J 2014 Laser Photon. Rev. 8 137

    [22]

    Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40

    [23]

    Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331

    [24]

    Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110

    [25]

    Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075

    [26]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [27]

    Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281

    [28]

    Wu Y 2000 Phys. Rev. A 61 033803

    [29]

    Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968

    [30]

    Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502

    [31]

    Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620

    [32]

    Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512

    [33]

    Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101

    [34]

    Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871

    [35]

    Wu Y, Leung P T 1999 Phys. Rev. A 60 630

    [36]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282

    [37]

    Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415

    [38]

    Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238

    [39]

    He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60

    [40]

    Vahala K J 2003 Nature 424 839

    [41]

    Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82

    [42]

    Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572

    [43]

    Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947

    [44]

    Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027

    [45]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960

    [46]

    Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242

    [47]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [48]

    Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8

    [49]

    Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777

    [50]

    Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111

    [51]

    Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696

    [52]

    Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137

    [53]

    Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337

    [54]

    Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143

    [55]

    Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374

    [56]

    Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270

    [57]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074

    [58]

    Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952

    [59]

    Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101

    [60]

    Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494

    [61]

    Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612

    [62]

    Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109

    [63]

    Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297

    [64]

    Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103

    [65]

    Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150

    [66]

    Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122

    [67]

    Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110

    [68]

    Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247

    [69]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802

    [70]

    Lacey S, Wang H L 2001 Opt. Lett. 26 1943

    [71]

    Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556

    [72]

    Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411

    [73]

    Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435

    [74]

    Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 物理学报 63 074205]

    [75]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 物理学报 63 014206]

    [76]

    Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 物理学报 63 054201]

    [77]

    Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157

    [78]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136

    [79]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710

  • [1]

    Gao M, Wei C, Lin X, Liu Y, Hu F, Zhao Y S 2017 Chem. Commun. 53 3102

    [2]

    Qiu W, Huang Y, Chen H, Qiu P, Tang Y, Wang J X, Kan Q, Pan J Q 2017 Plasmonics 12 39

    [3]

    Wang H, Liu S, Chen L, Shen D, Wu X 2016 Sci. Rep. 6 38053

    [4]

    Graf A, Held M, Zakharko Y, Tropf L, Gather M C, Zaumseil J 2017 Nat. Mater. 16 911

    [5]

    Chen W, Ozdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [6]

    Wang M, Lin J T, Xu Y X, Fang Z W, Qiao L L, Liu Z M, Fang W, Cheng Y 2017 Opt. Commun. 395 249

    [7]

    Gao Y P, Wang T J, Cao C, Wang C 2017 Photon. Res. 5 113

    [8]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905

    [9]

    Tomazio N B, de Boni L, Mendonca C R 2017 Sci. Rep. 7 8559

    [10]

    Kushida S, Okada D, Sasaki F, Lin Z H, Huang J S, Yamamoto Y 2017 Adv. Opt. Mater. 5 1700123

    [11]

    Yang Y D, Xiao Z X, Weng H Z, Xiao J L, Huang Y Z 2016 Proc. SPIE 10017 100170K

    [12]

    Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z, Xiao Z X 2016 Appl. Phys. Lett. 109 071102

    [13]

    Heylman K D, Thakkar N, Horak E H, Quillin S C, Cherqui C, Knapper K A, Masiello D J, Goldsmith R H 2016 Nat. Photon. 10 788

    [14]

    Wang Y, Qin F, Lu J, Li J, Zhu Z, Zhu Q, Zhu Y, Shi Z, Xu C 2017 Nano Res. 10 3447

    [15]

    Shang J, Cong C, Wang Z, Peimyoo N, Wu L, Zou C, Chen Y, Chin X Y, Wang J, Soci C 2017 Nat. Commun. 8 543

    [16]

    Choi H, Heuck M, Englund D 2017 Phys. Rev. Lett. 118 223605

    [17]

    Gu F, Xie F, Lin X, Linghu S, Fang W, Zeng H, Tong L, Zhuang S 2017 Light-Sci. Appl. 6 e17061

    [18]

    Tang B, Dong H, Sun L, Zheng W, Wang Q, Sun F, Jiang X, Pan A, Zhang L 2017 ACS Nano 11 10681

    [19]

    Dusel M, Betzold S, Brodbeck S, Herbst S, Wrthner F, Friedrich D, Hecht B, Höfling S, Dietrich C P 2017 Appl. Phys. Lett. 110 201113

    [20]

    Mi Y, Zhang Z, Zhao L, Zhang S, Chen J, Ji Q, Shi J, Zhou X, Wang R, Shi J, Du W, Wu Z, Qiu X, Zhang Q, Zhang Y, Liu X 2017 Small 13 1701694

    [21]

    Shen X, Cui T J 2014 Laser Photon. Rev. 8 137

    [22]

    Jiang X F, Zou C L, Wang L, Gong Q, Xiao Y F 2016 Laser Photon. Rev. 10 40

    [23]

    Zhan X P, Xu Y X, Xu H L, Huang Q L, Hou Z S, Fang W, Chen Q D, Sun H B 2017 J. Lightwave Technol. 35 2331

    [24]

    Kim K H, Bahl G, Lee W, Liu J, Tomes M, Fan X, Carmon T 2013 Light-Sci. Appl. 2 e110

    [25]

    Park Y S, Cook A K, Wang H 2006 Nano Lett. 6 2075

    [26]

    Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, Kimble H J 2005 Phys. Rev. A 71 013817

    [27]

    Wu Y, Yang X X 2001 J. Phys. B:At. Mol. Opt. Phys. 34 2281

    [28]

    Wu Y 2000 Phys. Rev. A 61 033803

    [29]

    Rabiei P, Steier W H, Zhang C, Dalton L R 2002 J. Lightwave Technol. 20 1968

    [30]

    Batista P D, Drescher B, Seidel W, Rudolph J, Jiao S, Santos P V 2008 Appl. Phys. Lett. 92 133502

    [31]

    Chin M K, Youtsey C, Zhao W, Pierson T, Ren Z, Wu S L, Wang L, Zhao Y G, Ho S T 1999 IEEE Photon. Technol. Lett. 11 1620

    [32]

    Krioukov E, Klunder D J W, Driessen A, Greve J, Otto C 2002 Opt. Lett. 27 512

    [33]

    Mehrabani S, Kwong P, Gupta M, Armani A M 2013 Appl. Phys. Lett. 102 241101

    [34]

    Ku J F, Chen Q D, Zhang R, Sun H B 2011 Opt. Lett. 36 2871

    [35]

    Wu Y, Leung P T 1999 Phys. Rev. A 60 630

    [36]

    Flatae A M, Burresi M, Zeng H, Nocentini S, Wiegele S, Parmeggiani C, Kalt H, Wiersma D 2015 Light-Sci. Appl. 4 e282

    [37]

    Lu S Y, Fang H H, Feng J, Xia H, Zhang T Q, Chen Q D, Sun H B 2014 J. Lightwave Technol. 32 2415

    [38]

    Gomez D E, Pastoriza-Santos I, Mulvaney P 2005 Small 1 238

    [39]

    He L, Oezdemir S K, Yang L 2013 Laser Photon. Rev. 7 60

    [40]

    Vahala K J 2003 Nature 424 839

    [41]

    Grossmann T, Wienhold T, Bog U, Beck T, Friedmann C, Kalt H, Mappes T 2013 Light-Sci. Appl. 2 e82

    [42]

    Tian Z N, Yu F, Yu Y H, Xu J J, Chen Q D, Sun H B 2017 Opt. Lett. 42 1572

    [43]

    Wang D, Chen L, Fang B, Zhu Y 2017 Plasmonics 12 947

    [44]

    Chen L, Wei Y, Zang X, Zhu Y, Zhuang S 2016 Sci. Rep. 6 22027

    [45]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Opt. Mater. 5 1600960

    [46]

    Matsko A B, Savchenkov A A, Strekalov D, Mohageg N, Ilchenko V S, Maleki L 2005 Resonators and Beam Control VⅢ 5708 242

    [47]

    Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E, Imamoglu A 2000 Science 290 2282

    [48]

    Fan X, White I M, Shopova S I, Zhu H, Suter J D, Sun Y 2008 Anal. Chim. Acta 620 8

    [49]

    Sandoghdar V V, Treussart F, Hare J, Lefèvre-Seguin V V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777

    [50]

    Aubry G, Kou Q, Soto-Velasco J, Wang C, Meance S, He J J, Haghiri-Gosnet A M 2011 Appl. Phys. Lett. 98 111111

    [51]

    Li Z Y, Zhang Z Y, Emery T, Scherer A, Psaltis D 2006 Opt. Express 14 696

    [52]

    Gersborg-Hansen M, Kristensen A 2007 Opt. Express 15 137

    [53]

    Todescato F, Fortunati I, Gardin S, Garbin E, Collini E, Bozio R, Jasieniak J J, Della Giustina G, Brusatin G, Toffanin S, Signorini R 2012 Adv. Funct. Mater. 22 337

    [54]

    Yao W G, Guan K M, Tian Z N, Xu J J, Chen Q D, Sun H B 2016 J. Lightwave Technol. 34 4143

    [55]

    Li K H, Ma Z, Choi H W 2012 Opt. Lett. 37 374

    [56]

    Gargas D J, Moore M C, Ni A, Chang S W, Zhang Z, Chuang S L, Yang P 2010 ACS Nano 4 3270

    [57]

    Helbo B, Kristensen A, Menon A 2003 J. Micromech. Microeng. 13 0353074

    [58]

    Vezenov D V, Mayers B T, Conroy R S, Whitesides G M, Snee P T, Chan Y, Nocera D G, Bawendi M G 2005 J. Am. Chem. Soc. 127 8952

    [59]

    Galas J C, Torres J, Belotti M, Kou Q, Chen Y 2005 Appl. Phys. Lett. 86 264101

    [60]

    Li Z, Zhang Z, Scherer A, Psaltis D 2006 Opt. Express 14 10494

    [61]

    Li H, Shang L, Tu X, Liu L, Xu L 2009 J. Am. Chem. Soc. 131 16612

    [62]

    Xiao Y, Meng C, Wu X, Tong L 2011 Appl. Phys. Lett. 99 023109

    [63]

    Li H, Li J, Qiang L, Zhang Y, Hao S 2013 Nanoscale 5 6297

    [64]

    Lee W, Li H, Suter J D, Reddy K, Sun Y, Fan X 2011 Appl. Phys. Lett. 98 061103

    [65]

    Shang L, Liu L, Xu L 2008 Opt. Lett. 33 1150

    [66]

    Xiao Y, Meng C, Wang P, Ye Y, Yu H, Wang S, Gu F, Dai L, Tong L 2011 Nano Lett. 11 1122

    [67]

    Ben-Messaoud T, Zyss J 2005 Appl. Phys. Lett. 86 241110

    [68]

    Harayama T, Shinohara S 2011 Laser Photon. Rev. 5 247

    [69]

    Wiersig J, Hentschel M 2006 Phys. Rev. A 73 031802

    [70]

    Lacey S, Wang H L 2001 Opt. Lett. 26 1943

    [71]

    Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L, Cho A Y 1998 Science 280 1556

    [72]

    Sun H B, Tanaka T, Takada K, Kawata S 2001 Appl. Phys. Lett. 79 1411

    [73]

    Zhang Y L, Chen Q D, Xia H, Sun H B 2010 Nano Today 5 435

    [74]

    Zhang R, L C, Xiao X Z, Luo Y, He Y, Xu Y 2014 Acta Phys. Sin. 63 074205 (in Chinese) [张然, 吕超, 肖鑫泽, 骆杨, 何艳, 徐颖 2014 物理学报 63 074205]

    [75]

    Zhang R, Xiao X Z, L C, Luo Y, Xu Y 2014 Acta Phys. Sin. 63 014206 (in Chinese) [张然, 肖鑫泽, 吕超, 骆杨, 徐颖 2014 物理学报 63 014206]

    [76]

    Ran Z, Cao X W, Xu W W, Masanobu H, Gao B R 2014 Acta Phys. Sin. 63 054201 (in Chinese) [张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣 2014 物理学报 63 054201]

    [77]

    Ku J F, Chen Q D, Ma X W, Yang Y D, Huang Y Z, Xu H L, Sun H B 2015 IEEE Photon. Technol. Lett. 27 1157

    [78]

    Yang S, Wang Y, Sun H 2015 Adv. Opt. Mater. 3 1136

    [79]

    Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M, Johnson N M 2003 Appl. Phys. Lett. 83 1710

  • [1] Zheng Si-Wen, Liu Ya-Zhuo, Luo Xiao-Ling, Wang Li-Hui, Zhang Na, Zhang Jing-Jing, Jin Chuan-Yang, Xu Bing-Li, Qu Qiang, Chen Ling. Application and analysis of three-layer-core structure in single-mode large-mode-area fiber with low bending loss. Acta Physica Sinica, 2021, 70(22): 224214. doi: 10.7498/aps.70.20210410
    [2] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [3] Zhang Hao, Guo Xing-Xing, Xiang Shui-Ying. Key distribution based on unidirectional injection of vertical cavity surface emitting laser system. Acta Physica Sinica, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [4] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [5] Zhang Liang-Ying, Jin Guo-Xiang, Wang Zhi-Yun, Cao Li. Energetic stochastic resonance in gain-noise model for single-mode laser. Acta Physica Sinica, 2015, 64(3): 034210. doi: 10.7498/aps.64.034210
    [6] Zhang Wei, Teng Hao, Wang Zhao-Hua, Shen Zhong-Wei, Liu Cheng, Wei Zhi-Yi. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [7] Yun Zhi-Qiang, Wei Ru-Sheng, Li Wei, Luo Wei-Wei, Wu Qiang, Xu Xian-Gang, Zhang Xin-Zheng. Sub-diffraction-limit fabrication of 6H-SiC with femtosecond laser. Acta Physica Sinica, 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [8] Yang Ming, Li Xiang-Lian, Wu Da-Jin. Simulation study on the stochastic resonance of single-mode laser system. Acta Physica Sinica, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [9] Zhang Li, Yuan Xiu-Hua, Wu Li. Stochastic resonance for pulse signal modulated by noise in a single-mode laser system. Acta Physica Sinica, 2012, 61(11): 110501. doi: 10.7498/aps.61.110501
    [10] Han Hai-Nian, Zhang Jin-Wei, Zhang Qing, Zhang Long, Wei Zhi-Yi. Theoretical and experimental study on femtosecond enhancement resonator. Acta Physica Sinica, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [11] Zhu Jia-Jian, Du Wen-Bo, Zhou Pu, Xu Xiao-Jun, Liu Ze-Jin. Numerical study on power limit of single-mode fiber lasers. Acta Physica Sinica, 2012, 61(6): 064209. doi: 10.7498/aps.61.064209
    [12] Bai Ning-Feng, Hong Wei, Sun Xiao-Han. Composite defect electromagnetic band gap cavity. Acta Physica Sinica, 2011, 60(1): 018401. doi: 10.7498/aps.60.018401
    [13] Wang Xiao-Fa, Xia Guang-Qiong, Wu Zheng-Mao. Chaotic synchronization performances of two unidirectionally coupled VCSELs subject to negative optoelectronic feedback. Acta Physica Sinica, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [14] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [15] Jin Guo-Xiang, Cao Li, Zhang Liang-Ying. Stochastic resonance in a single-mode laser with modulated noise and biased amplitude modulation. Acta Physica Sinica, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [16] Zhang Liang-Ying, Cao Li, Jin Guo-Xiang. Stochastic resonance of amplitude modulation wave in single-mode laser driven by color noises. Acta Physica Sinica, 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [17] Zhong Dong-Zhou, Xia Guang-Qiong, Wang Fei, Wu Zheng-Mao. Vectorial chaotic synchronization characteristics of unidrectionally coupled and injected vertical-cavity surface-emitting lasers based on optical feedback. Acta Physica Sinica, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [18] Zhang Liang-Ying, Cao Li, Jin Guo-Xiang. Stochastic resonance of amplitude modulated wave in a linear model of single-mode laser. Acta Physica Sinica, 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [19] Xu Shi-Zhen, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Cheng Zhao-Gu, Feng Dong-Hai, Li Cheng-Bin, Xu Zhi-Zhan. Theoretical analysis of fs-laser induced micro-explosion in fused silica. Acta Physica Sinica, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [20] Wang Zhong-Chun. The quantization of a mesoscopic dissipation transmission line. Acta Physica Sinica, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
Metrics
  • Abstract views:  7173
  • PDF Downloads:  541
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2017
  • Accepted Date:  28 November 2017
  • Published Online:  20 March 2019

/

返回文章
返回