Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of phase modulation laser Doppler shift measurement method

Du Jun Yang Na Li Jun-Ling Qu Yan-Chen Li Shi-Ming Ding Yun-Hong Li Rui

Citation:

Improvement of phase modulation laser Doppler shift measurement method

Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sinusoidal phase-modulated signal light through the Fabry-Perot interferometer can produce a beat signal. Moreover, its amplitude monotonically changes with the signal light frequency. So the beat signal amplitude can be used to measure laser-Doppler-shift. In addition to the beat signal, the phase-modulated signal also contains a direct current (DC) signal, and it still contains a large amount of Doppler-shift information, but the information is not utilized, resulting in the waste of Doppler information. In this paper, this kind of phase-modulated laser-Doppler-shift measurement method is improved to simultaneously utilize the useful information in the DC and beat signal for the Doppler-shift measurement. The specific method is to use the ratio of beat signal amplitude to DC signal amplitude to define a new parameter used in Doppler-shift measurement. The signal light intensity terms in DC and beat signal can be eliminated, so the improved phase-modulated laser-Doppler-shift measurement method does not need to measure the signal light intensity, which makes its structure further simplified and a noise channel eliminated. By comparing the frequency change curves between the newly defined parameter and the beat signal amplitude theoretically, we find that they have the same distribution rule. This theoretical result shows that the improved phase-modulated laser-Doppler-shift measurement method will keep the same working mode as un-improved one, and can inherit its advantages. In theory, by comparing the measurement sensitivity curves, it is proved that the improved phase-modulated laser-Doppler-shift measurement method has higher measurement sensitivity and dynamic range than the un-improved one. The useful information included in the DC signal is the modulated signal light intensity transmittance of Fabry-Perot interferometer. So the improvement is essential to introduce the advantages of edge-technique laser-Doppler-shift measurement method based on the Fabry-Perot interferometer into the phase-modulated method for achieving higher performance. Two phase-modulated laser-Doppler-shift measurement methods before and after improvement are separately used to measure the frequency-shifted controllable signal light reflected by a hard object. The experimental results are in accordance with the theoretical analysis results very well. The comparison of experimental result between the two methods shows that the improved phase-modulated laser-Doppler-shift measurement method can approximately double the measurement dynamic range and reduce about 35% measurement standard deviation compared with the un-improved one.
      Corresponding author: Li Jun-Ling, LLJJLL333@163.com
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. F2016030).
    [1]

    Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286

    [2]

    Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]

    [3]

    Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 物理学报 66 234208]

    [4]

    Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726

    [5]

    Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676

    [6]

    Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208

    [7]

    Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 物理学报 61 044207]

    [8]

    Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764

    [9]

    Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018

    [10]

    Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24

    [11]

    Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202

    [12]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [13]

    Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120

    [14]

    Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023

    [15]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [16]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 物理学报 61 030702]

    [17]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]

    [18]

    Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]

    [19]

    Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]

    [20]

    Eric D B 2001 Am. J. Phys. 69 79

    [21]

    Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]

    [22]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169

    [23]

    Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 物理学报 66 184201]

  • [1]

    Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286

    [2]

    Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]

    [3]

    Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 物理学报 66 234208]

    [4]

    Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726

    [5]

    Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676

    [6]

    Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208

    [7]

    Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 物理学报 61 044207]

    [8]

    Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764

    [9]

    Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018

    [10]

    Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24

    [11]

    Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202

    [12]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [13]

    Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120

    [14]

    Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023

    [15]

    Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211

    [16]

    Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 物理学报 61 030702]

    [17]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]

    [18]

    Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]

    [19]

    Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]

    [20]

    Eric D B 2001 Am. J. Phys. 69 79

    [21]

    Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]

    [22]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169

    [23]

    Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 物理学报 66 184201]

  • [1] Wei Jia-Xin, Sha Peng-Fei, Fang Xu-Chen, Lu Zeng-Xiong, Li Hui, Tan Fang-Rui, Wu Xiao-Bin. Illumination homogenization of highly coherent light source based on phase modulation. Acta Physica Sinica, 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu. Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation. Acta Physica Sinica, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] Tian Jing, Hou Mei-Jiang, Jiang Yang, Zhang Hong-Xu, Bai Guang-Fu, Feng Hao. High sensitivity fiber displacement sensor based compound ring laser cavity with linear variation of beat frequency signal. Acta Physica Sinica, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [5] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] Yuan Qiang, Zhao Wen-Xuan, Ma Rui, Zhang Chen, Zhao Wei, Wang Shuang, Feng Xiao-Qiang, Wang Kai-Ge, Bai Jin-Tao. Sub-diffraction-limit spatially structured light pattern based on polarized beam phase modulation. Acta Physica Sinica, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [8] Tang Zhi-Ling, Yu Li-Juan, Li Si-Min. Virtual antenna array theory based on high speed mobile communications. Acta Physica Sinica, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [9] Wang Jian-Bo, Qian Jin, Liu Zhong-You, Lu Zu-Liang, Huang Lu, Yang Yan, Yin Cong, Li Tong-Bao. Methode of phase correction of displacement measurement using Fabry-Perot interferometer in calculable capacitor. Acta Physica Sinica, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [10] Meng Zeng-Ming, Huang Liang-Hui, Peng Peng, Chen Liang-Chao, Fan Hao, Wang Peng-Jun, Zhang Jing. Raman coupling in atomic Bose-Einstein condensed with phase-locked laser system. Acta Physica Sinica, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [11] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [12] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [13] Luo Bo-Wen, Dong Jian-Ji, Wang Xiao, Huang De-Xiu, Zhang Xin-Liang. Multi-channel multifunctional optical differentiator based on phase modulation and linear filtering. Acta Physica Sinica, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [14] Zhao Jiang-Nan, Ai Yong, Wang Jing-Fang. A method for temperature inversion in middle-upper atmosphere using FPI without laser calibration and its observational data preliminary analysis. Acta Physica Sinica, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [15] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [16] Yan Chun-Yan, Zhang Qiu-Ju. Strong monochromatic harmonics generated by the interaction of two counter-propagating pulses with a foil target. Acta Physica Sinica, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [17] Cai Dong-Mei, Ling Ning, Jiang Wen-Han. The performance of phase-only liquid crystal spatial light modulator used for generating Zernike terms. Acta Physica Sinica, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [18] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] Zhu Bo, Gui Yong-Sheng, Qiu Zhi-Jun, Zhou Wen-Zheng, Yao Wei, Guo Shao-Ling, Chu Jun-Hao, Zhang Fu-Jia. Beating oscillation of two-dimensional electrons gas in narrow gap dilute magnetic semiconductor. Acta Physica Sinica, 2006, 55(2): 786-790. doi: 10.7498/aps.55.786
    [20] Hou Yan-Xue, Ma Hai-Qiang, Wu Ling-An. A method to measure the beat frequency of weak light. Acta Physica Sinica, 2005, 54(2): 574-577. doi: 10.7498/aps.54.574
Metrics
  • Abstract views:  6943
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2017
  • Accepted Date:  03 November 2017
  • Published Online:  20 March 2019

/

返回文章
返回