-
Wavelength modulation-direct absorption spectroscopy (WM-DAS) integrates the advantages of measuring absolute absorbance profile from calibration-free direct absorption spectrum (DAS) with the enhanced noise rejection and high sensitivity of wavelength modulation spectrum (WMS). This method can be used to precisely recover the crucial absorbance profile via the extraction of the characteristic frequency of the modulated transmitted light. In this paper, the WM-DAS method with non-calibration and high signal-to-noise ratio is integrated with a Herriott cell (about 128 m). Under the condition of atmospheric pressure and room temperature, the absorptance functions of two spectral lines of CO2 (6330.821 cm–1) and CH4 (6046.964 cm–1) in air are measured, and their standard deviations of spectral fitting residual are 5.6 × 10–5 and 7 × 10–5, respectively. Subsequently, the concentration of CO2 and CH4 in air are monitored on-line by the WM-DAS method integrated with the Herriott cell, and compared with those by the highly sensitive continuous wave cavity ring down spectroscopy (CW-CRDS). The experimental results show that the measured results of the long optical path WM-DAS method are consistent with those by the CW-CRDS method, and the linear correlation between the two methods is above 0.99. The detection limit of CO2 and CH4 by the WM-DAS method are 170 ppb and 1.5 ppb respectively, which are slightly higher than those by the CW-CRDS. However, the measurement speed by WM-DAS is much higher than that by CW-CRDS, and possesses the advantages of simpler operation, lower environmental requirements, long-term stability, etc.
-
Keywords:
- wavelength modulation-direct absorption spectroscopy /
- cavity ring down spectroscopy /
- trace gas monitoring /
- calibration free /
- CH4
[1] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[2] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energ. Combust. 60 132Google Scholar
[3] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[4] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar
[5] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar
[6] Zhao G, Tan W, Jia M, Hou J, Ma W, Dong L, Zhang L, Feng X, Wu X, Yin W, Xiao L, Axner O, Jia S 2016 Sensors 16 1544Google Scholar
[7] Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar
[8] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[9] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[10] Kostinek J, Roiger A, Davis K J, Sweeney C, DiGangi J P, Choi Y, Baier B, Hase F, Groß J, Eckl M, Klausner T, Butz A 2019 Atmos. Meas. Tech. 12 1767Google Scholar
[11] Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar
[12] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[13] Bayrakli I 2018 Appl. Opt. 57 4039Google Scholar
[14] McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar
[15] 孙丽琴, 陈兵, 阚瑞峰, 李明星, 姚路, 魏敏, 何亚柏 2015 光学学报 35 0930002Google Scholar
Sun L Q, Chen B, Kan R F, Li M X, Yao L, Wei M, He Y B 2015 Acta Opt. Sin. 35 0930002Google Scholar
[16] Coburn S, Alden C B, Wright R, Cossel K, Baumann E, Truong G, Giorgetta F, Sweeney C, Newbury N R, Prasad K, Coddington I, Rieker G B 2018 Optica 5 320Google Scholar
[17] Fdil K, Michaud-Belleau V, Hébert N B, Guay P, Fleisher A J, Deschênes J D, Genest J 2019 Opt. Lett. 44 4415Google Scholar
[18] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[19] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[20] Peng Z M, Ding Y J, Jia J W, Lan L J, Du Y J, Li Z 2013 Opt. Express 21 23724Google Scholar
[21] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F 2014 Appl. Phys. B 117 1211Google Scholar
[22] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer. 224 197Google Scholar
[23] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[24] Halmer D, Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar
[25] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar
[26] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[27] Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar
[28] Zimnoch M, Necki J, Chmura L, Jasek A, Jelen D, Galkowski M, Kuc T, Gorczyca Z, Bartyzel J, Rozanski K 2019 Mitig. Adapt. Strat. Gl. 24 1051Google Scholar
[29] Savi F, Bene C D, Canfora L, Mondini C, Fares S 2016 Agr. Forest Meteorol. 226 67Google Scholar
[30] Tang J, Li B C, Wang J 2019 Atmos. Meas. Tech. 12 2851Google Scholar
[31] Allan D W 1966 Proc. IEEE 54 221Google Scholar
-
图 1 WM-DAS与CW-CRDS的系统原理图(LC, 激光电流和温度控制器; FI, 光纤隔离器; AOM, 声光调制器; APD, 雪崩光电二极管; PD, 光电二极管; DDG, 数字延迟发生器; PZT, 压电换能器; RF, 射频发生器; DAQ, 数据采集系统; WM, 波长计; MFC, 质量流量计)
Figure 1. System schematic diagram of WM-DAS and CW-CRDS. LC, laser current and temperature controller; FI, fiber isolator; AOM, acousto-optic modulator; APD, avalanche photodiode; PD, photodiode; DDG, digital delay generator; PZT, piezoelectric transducer; RF, radio frequency; DAQ, data acquisition system; WM, wavelength meter; MFC, mass flow controller.
图 2 激光频率标定以及FFT滤波 (a) 干涉仪信号(黑色实线), It (蓝色实线), 测量(黑色实心圆)以及拟合的相对频率(红色实线), 拟合残差(红色空心圆); (b) It的傅里叶系数的实部A (红色)与虚部B (蓝色), 低频噪声(0.35, 0.45 kHz)和高频噪声(499.7, 514.1 kHz)
Figure 2. Laser wavelength calibration and FFT filtering: (a) Etalon signal (black solid line), It (blue solid circle), measured (black solid circle) and fitted relative frequency (red solid line), fitting residual (red hollow circle); (b) real part and imaginary part of Fourier coefficients of It, and low frequency (0.35, 0.45 kHz) and high frequency (499.7, 514.1 kHz) noise.
图 3 采用WM-DAS方法在298 K, 100.9 kPa下所测的CO2 (红色)和CH4 (蓝色)吸收光谱, 以及Voigt拟合, 用时约1 s (为方便与CW-CRDS比较, 将吸收率转换为吸收系数(cm–1))
Figure 3. Absorption spectra of CO2 (red) and CH4 (blue) measured by WM-DAS in about 1 s at 298 K and 100.9 kPa, and the best fit of Voigt profile. In order to compare with CW-CRDS, the absorptance is converted to absorption coefficient (cm–1).
图 4 采用CW-CRDS在298 K, 100.9 kPa下测量的CO2 (红色)和CH4 (蓝色)两条谱线(用时约24 min) (a) 衰荡时间与电流的关系; (b) 吸收率函数及其Voigt拟合
Figure 4. The absorption spectra of CO2 (red) and CH4 (blue) measured by CRDS in about 24 min at 298 K and 100.9 kPa: (a) The relationship between the ring down time and the current; (b) the absorption function and the best fits of Voigt profile.
-
[1] Adámek P, Olejníček J, Čada M, Kment Š, Hubička Z 2013 Opt. Lett. 38 2428Google Scholar
[2] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2016 Prog. Energ. Combust. 60 132Google Scholar
[3] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[4] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S, Wood E 2010 Opt. Eng. 49 111124Google Scholar
[5] McManus J B, Zahniser M S, Nelson D D, Shorter J H, Herndon S C, Jervis D, Agnese M, McGovern R, Yacovitch T I, Roscioli J R 2015 Appl. Phys. B 119 203Google Scholar
[6] Zhao G, Tan W, Jia M, Hou J, Ma W, Dong L, Zhang L, Feng X, Wu X, Yin W, Xiao L, Axner O, Jia S 2016 Sensors 16 1544Google Scholar
[7] Pogány A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108Google Scholar
[8] Witzel O, Klein A, Meffert C, Wagner S, Kaiser S, Schulz C, Ebert V 2013 Opt. Express 21 19951Google Scholar
[9] Hanson R K 2011 Proc. Combust. Inst. 33 1Google Scholar
[10] Kostinek J, Roiger A, Davis K J, Sweeney C, DiGangi J P, Choi Y, Baier B, Hase F, Groß J, Eckl M, Klausner T, Butz A 2019 Atmos. Meas. Tech. 12 1767Google Scholar
[11] Pal M, Maity A, Pradhan M 2018 Laser Phys. 28 105702Google Scholar
[12] Maity A, Pal M, Banik1 G D, Maithani S, Pradhan M 2017 Laser Phys. Lett. 14 115701Google Scholar
[13] Bayrakli I 2018 Appl. Opt. 57 4039Google Scholar
[14] McHale L E, Martinez B, Miller T W, Yalin A P 2019 Opt. Express 27 20084Google Scholar
[15] 孙丽琴, 陈兵, 阚瑞峰, 李明星, 姚路, 魏敏, 何亚柏 2015 光学学报 35 0930002Google Scholar
Sun L Q, Chen B, Kan R F, Li M X, Yao L, Wei M, He Y B 2015 Acta Opt. Sin. 35 0930002Google Scholar
[16] Coburn S, Alden C B, Wright R, Cossel K, Baumann E, Truong G, Giorgetta F, Sweeney C, Newbury N R, Prasad K, Coddington I, Rieker G B 2018 Optica 5 320Google Scholar
[17] Fdil K, Michaud-Belleau V, Hébert N B, Guay P, Fleisher A J, Deschênes J D, Genest J 2019 Opt. Lett. 44 4415Google Scholar
[18] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[19] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[20] Peng Z M, Ding Y J, Jia J W, Lan L J, Du Y J, Li Z 2013 Opt. Express 21 23724Google Scholar
[21] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F 2014 Appl. Phys. B 117 1211Google Scholar
[22] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Radiat. Transfer. 224 197Google Scholar
[23] Mazurenka M, Wada R, Shillings A J L, Butler T J A, Beames J M, Orr-Ewing A J 2005 Appl. Phys. B 81 135Google Scholar
[24] Halmer D, Basum G, Hering P, Mürtz M 2004 Rev. Sci. Instrum. 75 2187Google Scholar
[25] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 29550Google Scholar
[26] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[27] Morville J, Romanini D, Kachanov A A, Chenevier M 2004 Appl. Phys. B 78 465Google Scholar
[28] Zimnoch M, Necki J, Chmura L, Jasek A, Jelen D, Galkowski M, Kuc T, Gorczyca Z, Bartyzel J, Rozanski K 2019 Mitig. Adapt. Strat. Gl. 24 1051Google Scholar
[29] Savi F, Bene C D, Canfora L, Mondini C, Fares S 2016 Agr. Forest Meteorol. 226 67Google Scholar
[30] Tang J, Li B C, Wang J 2019 Atmos. Meas. Tech. 12 2851Google Scholar
[31] Allan D W 1966 Proc. IEEE 54 221Google Scholar
Catalog
Metrics
- Abstract views: 9546
- PDF Downloads: 208
- Cited By: 0