Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy

Li Shao-Min Sun Li-Qun

Citation:

Measurement of methane gas with high absorbance based on modified wavelength modulation spectroscopy

Li Shao-Min, Sun Li-Qun
PDF
HTML
Get Citation
  • In this paper, the wavelength modulation spectroscopy (WMS) technique is modified and used for measuring methane with large absorbance. The WMS has been frequently used for gas measurement and relies on the linear relationship between the second harmonic amplitude and the gas volume concentration. However, the conventional WMS technique is only applicable for the gas whose absorbance is much smaller than 1, which is because the first-order approximation of Lambert-Beer's law is required in the derivation of the traditional WMS theory, and the first-order approximation holds only at low absorbance, hence the linear relationship between the second harmonic and the gas concentration does not hold at large absorbance. In the modified WMS in this work, it is not necessary to make any approximation to Lambert-Beer's law. The measured light is absorbed by the gas to be measured and then collected by the photodetector. The reference light is directly detected by another photodetector without being absorbed. The output signals of the two photodetectors are transmitted to the computer after implementing analog-to-digital conversion. In this way, the demodulated second harmonic signal remains linear with the gas concentration even at large absorbance. In this work, the traditional WMS theory and the modified WMS theory are both introduced, and a series of methane gas with concentration gradients are measured separately. The experimental results of the traditional WMS and the modified WMS are compared with each other. It is confirmed that the linearity in the traditional WMS theory no longer holds under large absorbance, but the improved WMS can still guarantee the linear relationship between the second harmonic and the methane concentration, which verifies the advantages of the modified scheme. Finally, through Allan's standard deviation analysis, the stability of this methane measurement system reaches the optimal value at the average time of 103.6 s, and the corresponding Allan's standard deviation is 1/26.62×10–9 volume.
      Corresponding author: Sun Li-Qun, sunlq@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFF0109600).
    [1]

    Lumbers B, Agar D W, Gebel J, Platte F 2022 Int. J. Hydrogen Energy 47 4265Google Scholar

    [2]

    Lumbers B, Barley J, Platte F 2022 Int. J. Hydrogen Energy 47 16347Google Scholar

    [3]

    Wikipedia contributors https://en.wikipedia.org/w/index.php?title=Methane&oldid=1103638016 [2022-9-1]

    [4]

    IPCC 2013 Climate Change 2013: The Physical Science Basis. (Cambridge: Cambridge University Press) pp164–167

    [5]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716Google Scholar

    [6]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [7]

    阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927Google Scholar

    [8]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [9]

    丁武文, 孙利群 2017 物理学报 66 120601Google Scholar

    Ding W W, Sun L Q 2017 Acta Phys. Sin. 66 120601Google Scholar

    [10]

    Ding W W, Sun L Q, Yi L Y 2016 Meas. Sci. Technol. 27 085202Google Scholar

    [11]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [12]

    Shemshad J 2015 Sens. Actuators, A 222 96Google Scholar

    [13]

    Zhang Z W, Chang J, Sun J C, Feng Y W, Sun H R, Zhang Q D, Fan Y M, Zhang Z F 2020 Appl. Opt. 59 8217Google Scholar

    [14]

    孙利群, 邹明丽, 王旋 2021 中国激光 48 1511001Google Scholar

    Sun L Q, Zou M L, W X 2021 Chin. J. Lasers 48 1511001Google Scholar

    [15]

    Kyle Owen, Farooq A 2014 Appl. Phys. B. 116 371

    [16]

    Lan L J, Ghasemifard H, Yuan Y, Hachinger S, Zhao X X, Bhattacharjee S, Bi X, Bai Y, Menzel A, Chen J 2020 Atmosphere 11 58Google Scholar

    [17]

    Geng J X, Lan L J, Luo Q W, Yang C H 2021 Proc. SPIE 11780, Global Intelligent Industry Conference Guangzhou, China, March 18, 2021 p117801V

    [18]

    Chao X, Jeffries J B, Hanson R K 2009 Meas. Sci. Technol. 20 115201Google Scholar

    [19]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [20]

    Ku R T, Hinkley E D, Sample J O 1975 Appl. Opt. 14 854Google Scholar

    [21]

    李宁, 翁春生 2011 物理学报 60 070701Google Scholar

    Li N, Weng C S 2011 Acta Phys. Sin. 60 070701Google Scholar

    [22]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [23]

    Upadhyay A, Chakraborty L A 2015 Opt. Lett. 40 4086Google Scholar

    [24]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [25]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546Google Scholar

    [26]

    Huang A, Cao Z, Zhao W S, Zhang H Y, Xu L J 2020 IEEE Trans. Instrum. Meas. 69 9087Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev Y V, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2021 J. Quant. Spectrosc. Radiat. Transfer 277 107949

    [28]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [29]

    严恭敏, 李四海 2012 惯性仪器测试与数据分析 (北京: 国防工业出版社) 第159—160页

    Yan G M, Li S H 2012 Inertial Instrumentation Testing and Data Analysis (Beijing: National Defense Industry Press) pp159–160 (in Chinese)

  • 图 1  1653 nm附近处的甲烷吸收线型(P = 1 × 105 Pa, T = 296 K)

    Figure 1.  Absorption profile of methane around 1653 nm (P = 1 × 105 Pa, T = 296 K).

    图 2  基于WMS技术测量甲烷气体的实验装置示意图

    Figure 2.  Illustration of the WMS-based methane measuring system.

    图 3  WMS实验中甲烷的二次谐波信号示例

    Figure 3.  Illustration of the 2nd harmonic of methane in the WMS experiment.

    图 4  WMS实验中甲烷的二次谐波幅值与甲烷浓度之间的关系

    Figure 4.  Relationship between the amplitude of the 2nd harmonic of methane and the concentration of methane in the WMS experiment

    图 5  基于改进的WMS技术测量甲烷气体的实验装置示意图

    Figure 5.  Illustration of the modified-WMS-based methane measuring system.

    图 6  参考通道波形示意图

    Figure 6.  Illustration of the waveform of the reference channel.

    图 7  测量通道波形示意图

    Figure 7.  Illustration of the waveform of the measurment channel.

    图 8  改进的WMS实验中甲烷的二次谐波信号示例

    Figure 8.  Illustration of the 2nd harmonic of methane in the modified-WMS experiment.

    图 9  改进的WMS实验中甲烷的二次谐波幅值与浓度的关系

    Figure 9.  Relationship between the amplitude of the 2nd harmonic of methane and the concentration of methane in the modified-WMS experiment.

    图 10  1000次连续测量中解算出的$ \xi $值的频率分布直方图

    Figure 10.  Frequency histogram of the value of $ \xi $ calculated in 1000 continuous measurements.

    图 11  基于改进的WMS的甲烷测量系统的艾伦标准差分析

    Figure 11.  Allan deviation analysis of the modified-WMS-based methane measurement system.

  • [1]

    Lumbers B, Agar D W, Gebel J, Platte F 2022 Int. J. Hydrogen Energy 47 4265Google Scholar

    [2]

    Lumbers B, Barley J, Platte F 2022 Int. J. Hydrogen Energy 47 16347Google Scholar

    [3]

    Wikipedia contributors https://en.wikipedia.org/w/index.php?title=Methane&oldid=1103638016 [2022-9-1]

    [4]

    IPCC 2013 Climate Change 2013: The Physical Science Basis. (Cambridge: Cambridge University Press) pp164–167

    [5]

    Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N, Bauer S E 2009 Science 326 716Google Scholar

    [6]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [7]

    阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927Google Scholar

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927Google Scholar

    [8]

    丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar

    Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar

    [9]

    丁武文, 孙利群 2017 物理学报 66 120601Google Scholar

    Ding W W, Sun L Q 2017 Acta Phys. Sin. 66 120601Google Scholar

    [10]

    Ding W W, Sun L Q, Yi L Y 2016 Meas. Sci. Technol. 27 085202Google Scholar

    [11]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [12]

    Shemshad J 2015 Sens. Actuators, A 222 96Google Scholar

    [13]

    Zhang Z W, Chang J, Sun J C, Feng Y W, Sun H R, Zhang Q D, Fan Y M, Zhang Z F 2020 Appl. Opt. 59 8217Google Scholar

    [14]

    孙利群, 邹明丽, 王旋 2021 中国激光 48 1511001Google Scholar

    Sun L Q, Zou M L, W X 2021 Chin. J. Lasers 48 1511001Google Scholar

    [15]

    Kyle Owen, Farooq A 2014 Appl. Phys. B. 116 371

    [16]

    Lan L J, Ghasemifard H, Yuan Y, Hachinger S, Zhao X X, Bhattacharjee S, Bi X, Bai Y, Menzel A, Chen J 2020 Atmosphere 11 58Google Scholar

    [17]

    Geng J X, Lan L J, Luo Q W, Yang C H 2021 Proc. SPIE 11780, Global Intelligent Industry Conference Guangzhou, China, March 18, 2021 p117801V

    [18]

    Chao X, Jeffries J B, Hanson R K 2009 Meas. Sci. Technol. 20 115201Google Scholar

    [19]

    Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 106 987Google Scholar

    [20]

    Ku R T, Hinkley E D, Sample J O 1975 Appl. Opt. 14 854Google Scholar

    [21]

    李宁, 翁春生 2011 物理学报 60 070701Google Scholar

    Li N, Weng C S 2011 Acta Phys. Sin. 60 070701Google Scholar

    [22]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [23]

    Upadhyay A, Chakraborty L A 2015 Opt. Lett. 40 4086Google Scholar

    [24]

    王飞, 黄群星, 李宁, 严建华, 池涌, 岑可法 2007 物理学报 56 3867Google Scholar

    Wang F, Huang Q X, Li N, Yan J H, Chi Y, Cen K F 2007 Acta Phys. Sin. 56 3867Google Scholar

    [25]

    Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546Google Scholar

    [26]

    Huang A, Cao Z, Zhao W S, Zhang H Y, Xu L J 2020 IEEE Trans. Instrum. Meas. 69 9087Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev Y V, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2021 J. Quant. Spectrosc. Radiat. Transfer 277 107949

    [28]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar

    [29]

    严恭敏, 李四海 2012 惯性仪器测试与数据分析 (北京: 国防工业出版社) 第159—160页

    Yan G M, Li S H 2012 Inertial Instrumentation Testing and Data Analysis (Beijing: National Defense Industry Press) pp159–160 (in Chinese)

  • [1] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [2] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [3] Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song. Theoretical studies on molecular conformers and infrared spectra of triethylamine. Acta Physica Sinica, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [4] Shaomin Li,  Liqun Sun. Large absorbance methane measurement based on wavelength modulation spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [5] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [6] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [7] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [8] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] Wang An-Jing, Fang Yong-Hua, Li Da-Cheng, Cui Fang-Xiao, Wu Jun, Liu Jia-Xiang, Li Yang-Yu, Zhao Yan-Dong. Simulation of pollutant-gas-cloud infrared spectra under plane-array detecting. Acta Physica Sinica, 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [10] Ding Wu-Wen, Sun Li-Qun. Phase sensitive chirped laser dispersion spectroscopy under high absorbance conditions. Acta Physica Sinica, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [11] Ding Wu-Wen, Sun Li-Qun, Yi Lu-Ying. High sensitive scheme for methane remote sensor based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [12] Liu Jiang-Ping, Li Jun, Liu Yuan-Qiong, Lei Hai-Le, Wei Jian-Jun. Infrared absorption of deuterium molecules at low temperature. Acta Physica Sinica, 2014, 63(2): 023301. doi: 10.7498/aps.63.023301
    [13] Liu Jiang-Ping, Bi Peng, Lei Hai-Le, Li Jun, Wei Jian-Jun. Infrared absorption spectrum of solid deuterium at near-triple point temperature. Acta Physica Sinica, 2013, 62(16): 163301. doi: 10.7498/aps.62.163301
    [14] Li Xin, Yang Meng-Shi, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. DFT research on the IR spectrum of glycine tryptophan oligopeptides chain. Acta Physica Sinica, 2013, 62(15): 156103. doi: 10.7498/aps.62.156103
    [15] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [16] Sun Jie, Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Dai Shi-Xun, Zhang Wei, Song Bao-An, Shen Xiang, Xu Tie-Feng. Effect of PbI2 on optical properties of Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2011, 60(11): 114212. doi: 10.7498/aps.60.114212
    [17] Liu Xiao-Dong, Tao Wan-Jun, Hagihala Masato, Guo Qi-Xin, Meng Dong-Dong, Zhang Sen-Lin, Zheng Xu-Guang. Mid-infrared spectroscopic properties of geometrically frustrated basic cobalt chlorides. Acta Physica Sinica, 2011, 60(3): 037803. doi: 10.7498/aps.60.037803
    [18] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [19] Bi Peng, Liu Yuan-Qiong, Tang Yong-Jian, Yang Xiang-Dong, Lei Hai-Le. Infrared absorption of liquid-hydrogen planar cryotargets. Acta Physica Sinica, 2010, 59(11): 7531-7534. doi: 10.7498/aps.59.7531
    [20] LING ZHI-HUA. STUDY OF POLARIZED FT-IR FOR ANTIFERROELECTRIC LIQUID CRYSTAL TFMHxPOCBC-D2 IN A HOMEOTROPICALLY ALIGNED CELL. Acta Physica Sinica, 2001, 50(2): 227-232. doi: 10.7498/aps.50.227
Metrics
  • Abstract views:  5238
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2022
  • Accepted Date:  19 September 2022
  • Available Online:  30 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回