Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules

Yang Wei-Ming Duan Xiao-Xi Zhang Chen Li Yu-Long Liu Hao Guan Zan-Yang Zhang Huan Sun Liang Dong Yun-Song Yang Dong Wang Zhe-Bin Yang Jia-Min

Citation:

Optimization and application of shock wave measurement technology for shock-timing experiments on small-scale capsules

Yang Wei-Ming, Duan Xiao-Xi, Zhang Chen, Li Yu-Long, Liu Hao, Guan Zan-Yang, Zhang Huan, Sun Liang, Dong Yun-Song, Yang Dong, Wang Zhe-Bin, Yang Jia-Min
PDF
HTML
Get Citation
  • In laser fusion research, the precision of shock-timing technology is pivotal for attaining optimal adiabatic tuning during the compression phase of fusion capsules, which is crucial for ensuring the high-performance implosion. The current main technological approach for shock-timing experiments is to use keyhole targets and VISAR (velocity interferometer system for any reflector) diagnostics to measure the shock velocity history. Nonetheless, this approach encounters limitations when scaling down to smaller capsules, primarily due to the reduced effective reflection area available for VISAR diagnostics. In this work, a novel high-precision shock-timing experimental methodology is used to realize a double-step radiation-driven implosion of a 0.375 mm radius capsule on a 100 kJ laser facility. By calculating the intensity of VISAR images with spherical reflective surfaces, a new experimental technical route is proposed, i.e. using the keyhole cone reflection effect to enhance the VISAR diagnostic spatial area, which can effectively increase the effective data collection region by nearly threefold for small-scale capsules. The technique has been adeptly used to measure shock waves in cryogenic liquid-deuterium-filled capsules under shaped implosion experimental conditions, thus obtaining high-precision shock-timing experimental data. The experimental data reveal that the application of this technology can markedly enhance both the image quality and the precision of data analysis for shock wave velocity measurements in small-scale capsules. Furthermore, it is discovered that under similar laser conditions, there exist considerable variations in the shock velocity profiles. Simulation analysis shows that the difference in chasing behavior of the “N+1” reflected shock wave caused by small changes in laser intensity is the main reason for the significant difference in merging speed. It is demonstrated that small changes in laser parameters can significantly affect the transmission behavior of the shock wave. This experiment highlights the complex sensitivity of shock wave transmission in high-performance forming implosion physics process on a current small capsule scale, making it essential to conduct shock-timing experiments to accurately adjust actual shock wave behavior. This research not only lays a robust technical foundation for promoting adiabatic tuning experiments ofour 100 kJ laser facility but also has profound significance for the ultra-high pressure physics research based on the spherical convergence effect.
      Corresponding author: Wang Zhe-Bin, zhebinw@vip.sina.com ; Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the Foundation of National Key Laboratory of Plasma Physics, China (Grant No. 6142A04230101), the National Natural Science Foundation of China (Grant Nos. 120784351, 12275029, 12205276), and the Defense Industrial Technology Development Program of China (Grant No. JCKY2023212801).
    [1]

    Lindl J 1995 Phys. Plasmas 2 3933Google Scholar

    [2]

    Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [3]

    Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第41页

    Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) p41

    [4]

    Robey H F, MacGowan B J, Landen O L, LaFortune K N, Widmayer C, Celliers P M, Moody J D, Ross J S, Ralph J, LePape S, Berzak Hopkins L F, Spears B K, Haan S W, Clark D, Lindl J D, Edwards M J 2013 Phys. Plasmas 20 052707Google Scholar

    [5]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706Google Scholar

    [6]

    Haan S W, Pollaine S M, Lindl J D, Suter L J, Berger R L, Powers L V, Alley W E, Amendt P A, Futterman J A, Levedahl W K, Rosen M D, Rowley D P, Sacks R A, Shestakov A I, Strobel G L, Tabak M, Weber S V, Zimmerman G B 1995 Phys. Plasmas 2 2480Google Scholar

    [7]

    Hu S X, Goncharov V N, Boehly T R, McCrory R L, Skupsky S, Collins L A, Kress J D, Militzer B 2015 Phys. Plasmas 22 056304Google Scholar

    [8]

    Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Marozas J A, Sangster J C, Landen O L, Meyerhofer D D 2009 Phys. Plasmas 16 056302Google Scholar

    [9]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916Google Scholar

    [10]

    Boehly T R, Goncharov V N, Seka W, Barrios M A, Celliers P M, Hicks D G, Collins G W, Hu S X, Marozas J A, Meyerhofer D D 2011 Phys. Rev. Lett. 106 195005Google Scholar

    [11]

    Robey H F, Boehly T R, Celliers P M, et al. 2012 Phys. Plasmas 19 042706Google Scholar

    [12]

    Robey H F, Muncro D H, Spears B K, Marinak M M, Jones O S, Patel M V, Haan S W, Salmonson J D, Landen O L, Boehly T R, Nikroo A 2008 J. Phys. Conf. Ser. 112 022078Google Scholar

    [13]

    Robey H F, Celliers P M, Moody J D, Sater J, Parham T, Kozioziemski B, Dylla-Spears R, Ross J S, LePape S, Ralph J E, Hohenberger M, Dewald E L, Berzak Hopkins L, Kroll J J, Yoxall B E, Hamza A V, Boehly T R, Nikroo A, Landen O L, Edwards M J 2014 Phys. Plasmas 21 022703Google Scholar

    [14]

    Robey H F, Celliers P M, Kline J L, et al. 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [15]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Yuan X D, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Zhang R, Wang F, Jia H T, Deng X W 2017 Matter Radiat. Extremes 2 243Google Scholar

    [16]

    晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅 2015 物理学报 64 125203Google Scholar

    Yan J, Zhang X, Zheng J H, Yuan Y T, Kang D G, Ge F J, Li C, Song Z F, Yuan Z, Jiang W, Yu B, Chen B L, Pu Y D, Huang T X 2015 Acta Phys. Sin. 64 125203Google Scholar

    [17]

    蒲昱东, 康洞国, 黄天晅, 高耀明, 陈家斌, 唐琦, 宋仔峰, 彭晓世, 陈伯伦, 蒋炜, 余波, 晏骥, 江少恩, 刘慎业, 杨家敏, 丁永坤 2014 物理学报 63 125211Google Scholar

    Pu Y D, Kang D G, Huang T X, Gao Y M, Chen J B, Tang Q, Song Z F, Peng X S, Chen B L, Jiang W, Yu B, Yan J, Jiang S E, Liu S Y, Yang J M, Ding Y K 2014 Acta Phys. Sin. 63 125211Google Scholar

    [18]

    黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋 2023 物理学报 72 025201Google Scholar

    Huang T X, Wu C S, Chen Z J, Yan J, Li X, Ge F J, Zhang X, Jiang W, Deng B, Hou L F, Pu Y D, Dong Y S, Wang L F 2023 Acta Phys. Sin. 72 025201Google Scholar

    [19]

    Ge F J, Pu Y D, Wang K, Huang T X, Sun C K, Qi X B, Wu C S, Gu J F, Chen Z J, Yan J, Jiang W, Yang D, Dong Y S, Wang F, Zhou S Y, Ding Y K 2023 Nucl. Fusion 63 086033Google Scholar

    [20]

    Philpott M K, George A, Whiteman G, De’Ath J, Millett J C F 2015 Meas. Sci. Technol. 26 125204Google Scholar

    [21]

    Barker L M 1998 AIP Conf. Proc. 429 833Google Scholar

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [23]

    Li Z C, Zhu X L, Jiang X H, Liu S Y, Zheng J, Li S W, Wang Z B, Yang D, Zhang H, Guo L, Xin J, Song T M, Ding Y K 2011 Rev. Sci. Instrum. 82 106106Google Scholar

    [24]

    Theobald W, Miller J E, Boehly T R, Vianello E, MeyerhoferD D, Sangster T C 2006 Phys. Plasmas 13 122702Google Scholar

    [25]

    Celliers P M, Collins G W, Da Silva L B, Cauble R, Gold D M, Foord M E, Holmes N C, Hammel B A, Wallace R J, Ng A 2000 Phys. Rev. Lett. 84 5564Google Scholar

    [26]

    Zaghoo M, Boehly T R, Rygg J R, Celliers P M, Hu S X, Collins G W 2019 Phys. Rev. Lett. 122 085001Google Scholar

    [27]

    Erskine D, Eggert J, Celliers P, Hicks D 2017 AIP Conf. Proc. 1793 160016Google Scholar

    [28]

    Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [29]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [30]

    Landen O L, Caseya D T, DiNicola J M, et al. 2020 High Energy Density Phys. 36 100755Google Scholar

  • 图 1  (a) 球形反射面下VISAR诊断光路入射和收光示意图; (b) 成像系统F数为3时不同半径球形反射面的VISAR数据测量空间方向的光强分布; (c) 成像系统F数为4.5时不同半径球形反射面的VISAR数据测量空间方向的光强分布

    Figure 1.  (a) Diagnostic diagram of VISAR for spherical reflector; (b) spatial intensity distribution of VISAR data for spherical reflectors with different radii under the f/3 of imaging system; (c) spatial intensity distribution of VISAR data for spherical reflectors with different radii under the f/4.5 of imaging system.

    图 2  (a) 利用keyhole锥壁反射效应时球形反射面的VISAR诊断示意图; (b) 有10°锥角/无锥角时VISAR光强随倾角的变化; (c) 成像系统F数为3、半锥角为10°下不同半径球形反射面的VISAR数据测量空间方向的光强分布

    Figure 2.  (a) Diagnostic diagram of VISAR for spherical reflector with cone reflection; (b) comparison of the relationship between VISAR data intensity and inclination angle with 10° cone angle or without cone angle; (c) spatial intensity distribution of VISAR data for spherical reflectors with different radii under the f/3 of imaging system and 10° cone angle.

    图 3  (a) 无锥角和(b) 10°锥角keyhole靶冲击波调控实验原理示意图; (c) 无锥角和(d) 10°锥角keyhole靶冲击波调控实验设计辐射温度波形(蓝色实线)、VISAR仿真图像

    Figure 3.  Schematic diagram of shock-timing experiment under (a) non-cone angle and (b) 10° cone angle keyhole target; design of laser waveform (blue solid line) and VISAR simulation image of shock-timing experiment under (c) non-cone angle and (d) 10° cone angle keyhole target.

    图 4  不同keyhole锥角的冲击波调控实验获得的VISAR原始图像

    Figure 4.  VISAR raw images obtained from shock-timing experiments with different cone angles of keyhole target.

    图 5  液氘中的冲击波速度历程

    Figure 5.  Shock velocity history in deuterium.

    图 6  实验实际注入黑腔的单束激光平均波形及测量的辐射温度

    Figure 6.  Average waveform of single laser beam injected into hohlraum and measured radiation temperature.

    图 7  258发次冲击波传输轨迹的实验后模拟

    Figure 7.  Simulation of shock propagation trajectory of shot 258.

    图 8  274发次冲击波传输轨迹的实验后模拟

    Figure 8.  Simulation of shock propagation trajectory of shot 274.

  • [1]

    Lindl J 1995 Phys. Plasmas 2 3933Google Scholar

    [2]

    Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [3]

    Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社) 第41页

    Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) p41

    [4]

    Robey H F, MacGowan B J, Landen O L, LaFortune K N, Widmayer C, Celliers P M, Moody J D, Ross J S, Ralph J, LePape S, Berzak Hopkins L F, Spears B K, Haan S W, Clark D, Lindl J D, Edwards M J 2013 Phys. Plasmas 20 052707Google Scholar

    [5]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706Google Scholar

    [6]

    Haan S W, Pollaine S M, Lindl J D, Suter L J, Berger R L, Powers L V, Alley W E, Amendt P A, Futterman J A, Levedahl W K, Rosen M D, Rowley D P, Sacks R A, Shestakov A I, Strobel G L, Tabak M, Weber S V, Zimmerman G B 1995 Phys. Plasmas 2 2480Google Scholar

    [7]

    Hu S X, Goncharov V N, Boehly T R, McCrory R L, Skupsky S, Collins L A, Kress J D, Militzer B 2015 Phys. Plasmas 22 056304Google Scholar

    [8]

    Boehly T R, Munro D, Celliers P M, Olson R E, Hicks D G, Goncharov V N, Collins G W, Robey H F, Hu S X, Marozas J A, Sangster J C, Landen O L, Meyerhofer D D 2009 Phys. Plasmas 16 056302Google Scholar

    [9]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916Google Scholar

    [10]

    Boehly T R, Goncharov V N, Seka W, Barrios M A, Celliers P M, Hicks D G, Collins G W, Hu S X, Marozas J A, Meyerhofer D D 2011 Phys. Rev. Lett. 106 195005Google Scholar

    [11]

    Robey H F, Boehly T R, Celliers P M, et al. 2012 Phys. Plasmas 19 042706Google Scholar

    [12]

    Robey H F, Muncro D H, Spears B K, Marinak M M, Jones O S, Patel M V, Haan S W, Salmonson J D, Landen O L, Boehly T R, Nikroo A 2008 J. Phys. Conf. Ser. 112 022078Google Scholar

    [13]

    Robey H F, Celliers P M, Moody J D, Sater J, Parham T, Kozioziemski B, Dylla-Spears R, Ross J S, LePape S, Ralph J E, Hohenberger M, Dewald E L, Berzak Hopkins L, Kroll J J, Yoxall B E, Hamza A V, Boehly T R, Nikroo A, Landen O L, Edwards M J 2014 Phys. Plasmas 21 022703Google Scholar

    [14]

    Robey H F, Celliers P M, Kline J L, et al. 2012 Phys. Rev. Lett. 108 215004Google Scholar

    [15]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Yuan X D, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Zhang R, Wang F, Jia H T, Deng X W 2017 Matter Radiat. Extremes 2 243Google Scholar

    [16]

    晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅 2015 物理学报 64 125203Google Scholar

    Yan J, Zhang X, Zheng J H, Yuan Y T, Kang D G, Ge F J, Li C, Song Z F, Yuan Z, Jiang W, Yu B, Chen B L, Pu Y D, Huang T X 2015 Acta Phys. Sin. 64 125203Google Scholar

    [17]

    蒲昱东, 康洞国, 黄天晅, 高耀明, 陈家斌, 唐琦, 宋仔峰, 彭晓世, 陈伯伦, 蒋炜, 余波, 晏骥, 江少恩, 刘慎业, 杨家敏, 丁永坤 2014 物理学报 63 125211Google Scholar

    Pu Y D, Kang D G, Huang T X, Gao Y M, Chen J B, Tang Q, Song Z F, Peng X S, Chen B L, Jiang W, Yu B, Yan J, Jiang S E, Liu S Y, Yang J M, Ding Y K 2014 Acta Phys. Sin. 63 125211Google Scholar

    [18]

    黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋 2023 物理学报 72 025201Google Scholar

    Huang T X, Wu C S, Chen Z J, Yan J, Li X, Ge F J, Zhang X, Jiang W, Deng B, Hou L F, Pu Y D, Dong Y S, Wang L F 2023 Acta Phys. Sin. 72 025201Google Scholar

    [19]

    Ge F J, Pu Y D, Wang K, Huang T X, Sun C K, Qi X B, Wu C S, Gu J F, Chen Z J, Yan J, Jiang W, Yang D, Dong Y S, Wang F, Zhou S Y, Ding Y K 2023 Nucl. Fusion 63 086033Google Scholar

    [20]

    Philpott M K, George A, Whiteman G, De’Ath J, Millett J C F 2015 Meas. Sci. Technol. 26 125204Google Scholar

    [21]

    Barker L M 1998 AIP Conf. Proc. 429 833Google Scholar

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [23]

    Li Z C, Zhu X L, Jiang X H, Liu S Y, Zheng J, Li S W, Wang Z B, Yang D, Zhang H, Guo L, Xin J, Song T M, Ding Y K 2011 Rev. Sci. Instrum. 82 106106Google Scholar

    [24]

    Theobald W, Miller J E, Boehly T R, Vianello E, MeyerhoferD D, Sangster T C 2006 Phys. Plasmas 13 122702Google Scholar

    [25]

    Celliers P M, Collins G W, Da Silva L B, Cauble R, Gold D M, Foord M E, Holmes N C, Hammel B A, Wallace R J, Ng A 2000 Phys. Rev. Lett. 84 5564Google Scholar

    [26]

    Zaghoo M, Boehly T R, Rygg J R, Celliers P M, Hu S X, Collins G W 2019 Phys. Rev. Lett. 122 085001Google Scholar

    [27]

    Erskine D, Eggert J, Celliers P, Hicks D 2017 AIP Conf. Proc. 1793 160016Google Scholar

    [28]

    Ramis R, Schmalz R and Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [29]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [30]

    Landen O L, Caseya D T, DiNicola J M, et al. 2020 High Energy Density Phys. 36 100755Google Scholar

  • [1] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] Xiong Hao, Zhong Zhe-Qiang, Zhang Bin, Sui Zhan, Zhang Xiao-Min. Untrafast smoothing scheme based on dynamic interference structure between beamlets of laser quad. Acta Physica Sinica, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [3] Shui Min, Yu Ming-Hai, Chu Gen-Bai, Xi Tao, Fan Wei, Zhao Yong-Qiang, Xin Jian-Ting, He Wei-Hua, Gu Yu-Qiu. Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser. Acta Physica Sinica, 2019, 68(7): 076201. doi: 10.7498/aps.68.20182280
    [4] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [5] Li Teng-Fei, Zhong Zhe-Qiang, Zhang Bin. Novel dynamic wavefront control scheme for ultra-fast beam smoothing. Acta Physica Sinica, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [6] Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [7] Yi Tao, Wang Chuan-Ke, Yang Jin-Wen, Zhu Xiao-Li, Xie Chang-Qing, Liu Shen-Ye. Investigation into the design and diffraction efficiency of shifted dual transmission grating. Acta Physica Sinica, 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [8] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng. Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions. Acta Physica Sinica, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [10] Fan Wei, Gu Yu-Qiu, Zhu Bin, Shui Min, Shan Lian-Qiang, Du Sai, Xin Jian-Ting, Zhao Zong-Qing, Zhou Wei-Min, Cao Lei-Feng, Zhang Xue-Ru, Wang Yu-Xiao. Design and theoretical research of an ultrafast time-resolved velocity interferometer. Acta Physica Sinica, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [11] Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Yu Rui-Zhen, Yang Jia-Min, Zhu Tuo, Hou Li-Fei, Du Hua-Bing. Fiducial system for the diagnosis of temporal evolution of radiation fluxes with soft-X-ray spectrometer in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [12] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [13] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [14] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [15] Cheng Wen-Yong, Zhang Xiao-Min, Su Jing-Qin, Zhao Sheng-Zhi, Dong Jun, Li Ping, Zhou Li-Dan. Suppression of small-scale self focusing of high power laser using moving beam. Acta Physica Sinica, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] Yao Xin, Gao Fu-Hua, Li Jian-Feng, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang. Study on the near field modulation and laser induced damage of beam sampling grating. Acta Physica Sinica, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] Near field modulation and laser induced damage of color separation gratings and combined color separation gratings-beam sampling gratings optical elements for use in inertial confinement fusion system. Acta Physica Sinica, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] YANG HONG-QIONG, YANG JIAN-LUN, WEN SHU-HUAI, WANG GEN-XING, GUO YU-ZHI, TANG ZHENG-YUAN, MU WEI-BING, MA CHI. DT FUEL AREAL DENSITY DIAGNOSTIC IN DIRECT-DRIVEN IMPLOSIONS. Acta Physica Sinica, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
Metrics
  • Abstract views:  2174
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2023
  • Accepted Date:  23 April 2024
  • Available Online:  24 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回