Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser

Liu Qing-Kang Zhang Xu Cai Hong-Bo Zhang En-Hao Gao Yan-Qi Zhu Shao-Ping

Citation:

Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser

Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping
PDF
HTML
Get Citation
  • Laser plasma instability is one of the difficulties that plague inertial confinement fusion. Broadband laser, as an effective tool for suppressing laser-plasma instabilities, has received a lot of attention in recent years. However, the nonlinear bursts of high-frequency instabilities, such as stimulated Raman scattering driven by broadband laser in the kinetic regime, make the suppression effect less than expected. In this study, a broadband laser model with intensity modulation is proposed. By choosing an appropriate intensity modulation envelope, it is possible to interrupt the amplification process of backscattered light in strong pulses, reduce the probability of high-intensity pulses inducing intense bursts, and drastically reduce the fraction of backscattered light and hot electron yield. Numerical simulations show that the intensity-modulated laser has a good ability to suppress stimulated Raman scattering. For a broadband laser with average power of $ 1.0 \times {10}^{15}\;{\mathrm{W}}/{\mathrm{c}}{{\mathrm{m}}}^{2} $ and a bandwidth of 0.6%, the reflectivity decreases by an order of magnitude and the fraction of hot electron energy above 20 keV decreases from 7.34% to 0.31% by using the intensity modulation technique. The above results confirm the feasibility of using the intensity-modulated broadband laser to suppress the high-frequency instability and are expected to provide a reference for designing the subsequent broadband laser-driven fusion experiments.
      Corresponding author: Cai Hong-Bo, cai_hongbo@iapcm.ac.cn ; Zhu Shao-Ping, zhu_shaoping@iapcm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1603204) and the National Natural Science Foundation of China (Grant Nos. 12325510, 12235014, 11975055).
    [1]

    Liu C S, Tripathi V K, Eliasson B 2020 High-Power Laser-Plasma Interaction (1st Ed.) (Cambridge: Cambridge University Press

    [2]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

    [3]

    Hurricane O A, Patel P K, Betti R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [4]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar

    [5]

    Chen Y, Zheng C Y, Liu Z J 2023 Plasma Phys. Control. Fusion 65 125002Google Scholar

    [6]

    Liu Z, Ma H, Wang W, Li X, Wang P, Wang C, Yew S H, Weng S M, Sheng Z M, Zhang J 2023 Nucl. Fusion 63 126010Google Scholar

    [7]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [8]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Sheng Z 2017 Matter Radiat. Extrem. 2 190Google Scholar

    [9]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled. Fusion 61 115008Google Scholar

    [10]

    Zhao Y, Weng S M, Ma H H, Bai X J, Sheng Z M 2022 Rev. Mod. Plasma Phys. 7 1Google Scholar

    [11]

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar

    [12]

    Follett R K, Shaw J G, Myatt J F, Wen H, Froula D H, Palastro J P 2021 Phys. Plasmas 28 032103Google Scholar

    [13]

    Zhou H Y, Xiao C Z, Zou D B, Li X Z, Yin Y, Shao F Q, Zhuo H B 2018 Phys. Plasmas 25 062703Google Scholar

    [14]

    Wen H, Follett R K, Maximov A V, Froula D H, Tsung F S, Palastro J P 2021 Phys. Plasmas 28 042109Google Scholar

    [15]

    Liu Q K, Zhang E H, Zhang W S, Cai H B, Gao Y Q, Wang Q, Zhu S P 2022 Phys. Plasmas 29 102105Google Scholar

    [16]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J, Shi H, Du P, Liu J, Li X, Wang T, Zhang T, Shan C, Hua Y, Ma W, Sun X, Chen X, Huang X, Zhu J, Pei W, Sui Z, Fu S 2020 Matter Radiat. Extrem. 5 065201Google Scholar

    [17]

    Thomson J J 1974 Phys. Fluids 17 1608Google Scholar

    [18]

    Ma H H, Li X F, Weng S M, Yew S H, Kawata S, Gibbon P, Sheng Z M, Zhang J 2021 Matter Radiat. Extrem. 6 055902Google Scholar

    [19]

    Guo Y, Zhang X, Xu D, Guo X, Shen B, Lan K 2023 Matter Radiat. Extrem. 8 035902Google Scholar

    [20]

    Goodman J W 2015 Statistical Optics (2nd Ed.) (Hoboken, New Jersey: Wiley) p516

    [21]

    Kline J L, Montgomery D S, Yin L, DuBois D F, Albright B J, Bezzerides B, Cobble J A, Dodd E S, Fernández J C, Johnson R P, Kindel J M, Rose H A 2 0006 Phys. Plasmas 13 055906Google Scholar

    [22]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [23]

    O’Neil T 1965 Phys. Fluids 8 2255Google Scholar

    [24]

    Yin L, Albright B J, Rose H A, Bowers K J, Bergen B, Kirkwood R K, Hinkel D E, Langdon A B, Michel P, Montgomery D S, Kline J L 2012 Phys. Plasmas 19 056304Google Scholar

    [25]

    Afeyan B, Hüller S 2013 EPJ Web Conf. 59 05009Google Scholar

    [26]

    Hüller S, Afeyan B 2013 EPJ Web Conf. 59 05010Google Scholar

    [27]

    Cai H bo, Yan X xin, Yao P lin, Zhu S ping 2021 Matter Radiat. Extrem. 6 035901Google Scholar

  • 图 1  宽带激光的时域统计特性 (a) 宽带激光的强度包络示意图; (b) 不同带宽激光的单个短脉冲时长分布; (c) 不同带宽激光的脉冲峰值强度分布. 其中, 纵轴代表宽带激光物理量的核密度函数分布估计(kernel density estimation, KDE)

    Figure 1.  Statistical properties of the broadband laser: (a) Intensity envelope of a broadband laser; (b) pulse duration ($ {{\Delta }}{t}_{{\mathrm{p}}} $) distribution for lasers with different bandwidths; (c) peak pulse intensity ($ {I}_{{\mathrm{p}}} $) distribution for lasers with different bandwidths. The vertical axis represents the kernel density estimation (KDE) of the physical quantities of the broadband laser.

    图 2  SRS动理学爆发中的背散光放大过程示意图

    Figure 2.  Schematic of back-scattered light amplification process in SRS kinetic bursts.

    图 3  强度调制宽带激光示意图 (a) 三种不同调制方案的强度包络; (b) 带宽为0.6%的宽带激光和使用50-100强度调制后的宽带激光电场包络对照

    Figure 3.  Schematic diagram of an intensity-modulated broadband laser: (a) Intensity envelopes for three different modulation schemes; (b) comparison of the electric field envelopes of a 0.6% bandwidth broadband laser and a broadband laser after using 50-100 intensity modulation.

    图 4  四种激光驱动下, 电子等离子体波时空演化图对照 (a) 单色激光驱动下的EPW演化过程; (b) 宽带激光驱动下的EPW演化过程; (c) 单色激光和宽带激光激发EPW的频谱; (d) 强度调制单色激光驱动下的EPW演化过程; (e) 强度调制宽带激光驱动下的EPW演化过程; (f) 强度调制单色激光/宽带激光激发EPW的频谱

    Figure 4.  Comparison of the spatio-temporal evolution of EPWs under four laser drives: (a) EPWs driven by a monochromatic laser; (b) EPWs driven by a broadband laser; (c) spectra of EPWs driven by the monochromatic laser and the broadband laser; (d) EPWs driven by an intensity-modulated monochromatic laser; (e) EPWs driven by an intensity-modulated broadband laser; (f) spectra of EPWs driven by the intensity-modulated monochromatic/broadband laser.

    图 5  到达模拟左边界的背散光电场随时间演化 (a) 单色激光驱动下的SRS背散光; (b)宽带激光驱动下的SRS背散光; (c) 强度调制单色激光驱动下的SRS背散光; (d) 强度调制宽带激光驱动下的SRS背散光

    Figure 5.  Electric field of back-scattered light observed at the left boundary of the simulation box: (a) SRS back-scattered light driven by a monochromatic laser; (b) SRS back-scattered light driven by a broadband laser; (c) SRS back-scattered light driven by an intensity-modulated monochromatic laser; (d) SRS back-scattered light driven by an intensity-modulated broadband laser.

    图 6  热电子统计分析图 (a) 四种激光在模拟结束时的电子分布函数; (b) 四种激光在模拟中产生热电子的份额, 通过分布函数与初始麦氏分布函数作差给出

    Figure 6.  Electron energy distribution in the simulations: (a) Electron distribution functions for the four lasers at $ 3000{\tau }_{0} $; (b) the fraction of hot electrons produced by the four lasers, given by the difference of the distribution function from the initial Maxwell distribution function.

  • [1]

    Liu C S, Tripathi V K, Eliasson B 2020 High-Power Laser-Plasma Interaction (1st Ed.) (Cambridge: Cambridge University Press

    [2]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

    [3]

    Hurricane O A, Patel P K, Betti R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [4]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002Google Scholar

    [5]

    Chen Y, Zheng C Y, Liu Z J 2023 Plasma Phys. Control. Fusion 65 125002Google Scholar

    [6]

    Liu Z, Ma H, Wang W, Li X, Wang P, Wang C, Yew S H, Weng S M, Sheng Z M, Zhang J 2023 Nucl. Fusion 63 126010Google Scholar

    [7]

    Zhao Y, Yu L L, Zheng J, Weng S M, Ren C, Liu C S, Sheng Z M 2015 Phys. Plasmas 22 052119Google Scholar

    [8]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Sheng Z 2017 Matter Radiat. Extrem. 2 190Google Scholar

    [9]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled. Fusion 61 115008Google Scholar

    [10]

    Zhao Y, Weng S M, Ma H H, Bai X J, Sheng Z M 2022 Rev. Mod. Plasma Phys. 7 1Google Scholar

    [11]

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111Google Scholar

    [12]

    Follett R K, Shaw J G, Myatt J F, Wen H, Froula D H, Palastro J P 2021 Phys. Plasmas 28 032103Google Scholar

    [13]

    Zhou H Y, Xiao C Z, Zou D B, Li X Z, Yin Y, Shao F Q, Zhuo H B 2018 Phys. Plasmas 25 062703Google Scholar

    [14]

    Wen H, Follett R K, Maximov A V, Froula D H, Tsung F S, Palastro J P 2021 Phys. Plasmas 28 042109Google Scholar

    [15]

    Liu Q K, Zhang E H, Zhang W S, Cai H B, Gao Y Q, Wang Q, Zhu S P 2022 Phys. Plasmas 29 102105Google Scholar

    [16]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J, Shi H, Du P, Liu J, Li X, Wang T, Zhang T, Shan C, Hua Y, Ma W, Sun X, Chen X, Huang X, Zhu J, Pei W, Sui Z, Fu S 2020 Matter Radiat. Extrem. 5 065201Google Scholar

    [17]

    Thomson J J 1974 Phys. Fluids 17 1608Google Scholar

    [18]

    Ma H H, Li X F, Weng S M, Yew S H, Kawata S, Gibbon P, Sheng Z M, Zhang J 2021 Matter Radiat. Extrem. 6 055902Google Scholar

    [19]

    Guo Y, Zhang X, Xu D, Guo X, Shen B, Lan K 2023 Matter Radiat. Extrem. 8 035902Google Scholar

    [20]

    Goodman J W 2015 Statistical Optics (2nd Ed.) (Hoboken, New Jersey: Wiley) p516

    [21]

    Kline J L, Montgomery D S, Yin L, DuBois D F, Albright B J, Bezzerides B, Cobble J A, Dodd E S, Fernández J C, Johnson R P, Kindel J M, Rose H A 2 0006 Phys. Plasmas 13 055906Google Scholar

    [22]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [23]

    O’Neil T 1965 Phys. Fluids 8 2255Google Scholar

    [24]

    Yin L, Albright B J, Rose H A, Bowers K J, Bergen B, Kirkwood R K, Hinkel D E, Langdon A B, Michel P, Montgomery D S, Kline J L 2012 Phys. Plasmas 19 056304Google Scholar

    [25]

    Afeyan B, Hüller S 2013 EPJ Web Conf. 59 05009Google Scholar

    [26]

    Hüller S, Afeyan B 2013 EPJ Web Conf. 59 05010Google Scholar

    [27]

    Cai H bo, Yan X xin, Yao P lin, Zhu S ping 2021 Matter Radiat. Extrem. 6 035901Google Scholar

  • [1] Long Xin-Yu, Xiong Jun, An Hong-Hai, Xie Zhi-Yong, Wang Pei-Pei, Fang Zhi-Heng, Wang Wei, Sun Jin-Ren, Wang Chen. Broadband laser driven near-forward scattering light of planar film target. Acta Physica Sinica, 2024, 73(22): 225202. doi: 10.7498/aps.73.20240823
    [2] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [3] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [5] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [6] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [7] Li Zhan-Long, Wang Yi-Ding, Zhou Mi, Men Zhi-Wei, Sun Cheng-Lin, Li Zuo-Wei. Stimulated Raman scattering in liquid water in a low-frequency region. Acta Physica Sinica, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [8] Liu Lan-Qin, Mo Lei, Luo Bin, Su Jing-Qin, Wang Wen-Yi, Wang Fang, Jing Feng, Wei Xiao-Feng. Amplification of hybrid-widen linewidth of broadband pulses in Nd:glass laser systems. Acta Physica Sinica, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [9] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [10] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [11] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [12] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [13] Zang Jing-Cun, Xie Li-Yan, Li Xiao, Zhang Dong-Xiang, Feng Bao-Hua. Investigating of SRS and luminescence of ZnWO4 crystals. Acta Physica Sinica, 2007, 56(5): 2689-2692. doi: 10.7498/aps.56.2689
    [14] Liu Lan-Qin, Su Jing-Qin, Luo Bin, Wang Wen-Yi, Jing Feng, Wei Xiao-Feng. Physical modeling of broadband pulsed laser amplification process based on hybrid-widened linewidth. Acta Physica Sinica, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [15] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [16] Tao Zong-Ming, Zhang Yin-Chao, Lü Yong-Hui, Hu Shun-Xing, Shao Shi-Sheng, Cao Kai-Fa, Liu Xiao-Qin, Yue Gu-Ming, Hu Huan-Ling. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, 2004, 53(8): 2589-2594. doi: 10.7498/aps.53.2589
    [17] Pu Xiao-Yun, Yang Rui, Wang Ya-Li, Chen Tian-Jiang, Jiang Nan. Enhancement of stimulated Raman scattering of minority species of binary mixture in pendant drops by dye lasing gain. Acta Physica Sinica, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [18] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [19] Zhang Xi-He, Wang Zhao-Min, Wan Chun-Ming. . Acta Physica Sinica, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
    [20] WANG JIE, YAO JIAN-QUAN, YU YI-ZHONG, WANG PENG, ZHANG FAN, WANG TAO. THEORY OF WIDE BANDWIDTH OPTICAL HARMONIC GENERATION BASED ON FREQUENCY MIXING. Acta Physica Sinica, 2001, 50(6): 1092-1096. doi: 10.7498/aps.50.1092
Metrics
  • Abstract views:  2253
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  21 October 2023
  • Accepted Date:  19 November 2023
  • Available Online:  05 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回