Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near forward scattering light of planar film target driven by broadband laser

Long Xin-Yu Wang Pei-Pei An Hong-Hai Xiong Jun Xie Zhi-Yong Fang Zhi-Heng Sun Jin-Ren Wang Chen

Citation:

Near forward scattering light of planar film target driven by broadband laser

Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen
PDF
HTML
Get Citation
  • Laser plasma interaction (LPI) has always been an important research topic in the ignition phase of inertial confinement fusion (ICF). Over the years, researchers have attempted to use various laser beam smoothing schemes and optimized light source solutions to suppress the development of LPI. Among them, low-coherence laser drivers have attracted widespread attention in the fields of laser-plasma physics and laser technology in recent years. Recently, a broadband second harmonic laser facility named “Kunwu” has provided a reliable experimental research platform for the LPI process driven by broadband lasers. Aiming at the strong stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in the LPI process of large-scale low-density plasma, forward scattering experiment and near-forward scattering experiment on C8H8 planar film targets driven by broadband laser and narrowband laser under the same conditions are carried out. Based on the “Kunwu” laser facility, two sets of measurement systems are designed, one is centered around fiber-heads and spectrometer, and the other around phototubes and oscilloscope. These systems enable multi-directional precise measurements of scattered lightand a comprehensive analysis of LPI. The main focus is on the comparison of the components and spectral information of the scattering beams between broadband laser and narrowband laser, and it is found that the LPI processes driven by broadband laser and narrowband laser are greatly different. Additionally, preliminary results indicate that broadband laser exhibits a stronger penetration capability than narrowband laser. The time to ablation the target and penetrate the plasma are both nearly 1 ns ahead, with the transmitted energy increased by nearly an order of magnitude. And after penetrating the plasma, there is a smaller spatial divergence angle. These results provide good reference value for better understanding the effect of broadband laser on LPI.
      Corresponding author: Sun Jin-Ren, sunjinren@263.net ; Wang Chen, wangch@mail.shcnc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074353, 12075227).
    [1]

    吴钟书, 赵耀, 翁苏明, 陈民, 盛政明 2019 物理学报 68 195202Google Scholar

    Wu Charles F, Zhao Y, Weng S M, Chen M, Sheng Z M 2019 Acta Phys. Sin. 68 195202Google Scholar

    [2]

    Seaton A, Arber T 2020 Phys. Plasmas 27 082704Google Scholar

    [3]

    Myatt J, Zhang J, Short R, Maximov A, Seka W, Froula D, Edgell D, Michel D, Igumenshchev I, Hinkel D 2014 Phys. Plasmas 21 055501Google Scholar

    [4]

    Pak A, Divol L, Kritcher A, Ma T, Ralph J, Bachmann B, Benedetti L, Casey D, Celliers P, Dewald E 2017 Phys. Plasmas 24 056306Google Scholar

    [5]

    Lushnikov P M, Rose H A 2006 Plasma Phys. Controlled Fusion 48 1501Google Scholar

    [6]

    Edwards M, Patel P, Lindl J, Atherton L, Glenzer S, Haan S, Kilkenny J, Landen O, Moses E, Nikroo A 2013 Phys. Plasmas 20 070501Google Scholar

    [7]

    Turnbull D, Michel P, Ralph J, Divol L, Ross J, Hopkins L B, Kritcher A, Hinkel D, Moody J 2015 Phys. Rev. Lett. 114 125001Google Scholar

    [8]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [9]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [10]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [11]

    Ruyer C, Debayle A, Loiseau P, Masson-Laborde P, Fuchs J, Casanova M, Marquès J, Romagnani L, Antici P, Bourgeois N 2021 Phys. Plasmas 28 052701Google Scholar

    [12]

    Michel P, Rosenberg M, Seka W, Solodov A, Short R, Chapman T, Goyon C, Lemos N, Hohenberger M, Moody J 2019 Phys. Rev. E 99 033203Google Scholar

    [13]

    余诗瀚, 李晓锋, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [14]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, d'Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [15]

    Sarri G, Cecchetti C, Jung R, Hobbs P, James S, Lockyear J, Stevenson R, Doria D, Hoarty D, Willi O 2011 Phys. Rev. Lett. 106 095001Google Scholar

    [16]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龙韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学, 力学, 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang Y L, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [17]

    赵耀, 郑君, 於陆勒, 陈民, 翁苏明, 盛政明 2015 中国科学: 物理学, 力学, 天文学 45 035201Google Scholar

    Zhao Y, Zheng J, Yu L Q, Chen M, Weng S M, Sheng Z M 2015 Sci. Sin-Phys. Mech. Astron. 45 035201Google Scholar

    [18]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z, Zhang J 2017 Phys. Plasmas 24 112102Google Scholar

    [19]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled Fusion 61 115008Google Scholar

    [20]

    Zhou H, Xiao C, Zou D, Li X, Yin Y, Shao F, Zhuo H 2018 Phys. Plasmas 25 062703Google Scholar

    [21]

    Bates J, Follett R, Shaw J, Obenschain S, Myatt J, Weaver J, Wolford M, Kehne D, Myers M, Kessler T 2023 Phys. Plasmas 30 052703Google Scholar

    [22]

    刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平 2024 物理学报 73 055202Google Scholar

    Liu Q K, Zhang X, Cai H B, Zhang E H, Gao Y Q, Zhu S P 2024 Acta Phys. Sin. 73 055202Google Scholar

    [23]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. Extremes 5 065201Google Scholar

    [24]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extremes 9 015602Google Scholar

    [25]

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [26]

    Rosenberg M, Hernandez J, Butler N, Filkins T, Bahr R, Jungquist R, Bedzyk M, Swadling G, Ross J, Michel P 2021 Rev. Sci Instrum. 92 033511Google Scholar

    [27]

    Moody J, Williams E, Glenzer S, Young P, Hawreliak J, Gouveia A, Wark J 2003 Phys. Rev. Lett. 90 245001Google Scholar

    [28]

    Froula D, Divol L, Meezan N, Dixit S, Neumayer P, Moody J, Pollock B, Ross J, Suter L, Glenzer S 2007 Phys. Plasmas 14 055705Google Scholar

    [29]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

  • 图 1  实验方案示意图

    Figure 1.  Sketch of the experimental setup.

    图 2  靶室内部探测器结构示意图

    Figure 2.  Schematic diagram of the detector inside target chamber.

    图 3  通过漫反射板系统测量的前向光信号积分光谱

    Figure 3.  Integrated spectrum of forward light measured by diffuse reflector system.

    图 4  前向透过激光能量的时间特性

    Figure 4.  Temporal characteristics of transmitted light.

    图 5  位于20°位置的L2探测器测量得到的大角度近前向散射积分光谱

    Figure 5.  Integrated spectrum of large-angle near-forward scattering light measured by L2 detector located at 20°.

    图 6  窄带与宽带激光驱动条件下不同角度的大角度近前向散射能量份额 (a) SBS; (b) SRS

    Figure 6.  Share of large-angle near-forward scattering light at different angles driven by boardband and narrowband laser: (a) SBS signals; (b) SRS signals.

    图 7  近前向散射能量与透过激光能量的比值 (a) SBS; (b) SRS

    Figure 7.  Ratio of near-forward scattering energy to transmitted laser energy: (a) SBS signals; (b) SRS signals.

    图 8  透过激光的能量弥散示意图

    Figure 8.  Schematic diagram of transmitted beam spray.

    表 1  驱动10 μm厚C8H8靶的透过激光能量

    Table 1.  Transmitted laser energy driving a 10 μm thick C8H8 target.

    序号 带宽 激光
    能量/J
    卡计
    能量/J
    标定后
    能量/J
    透过能量
    百分比/%
    1 宽带 680 172.8 138.6 20.4
    2 宽带 685 152.0 121.9 17.8
    3 窄带 694 16.9 13.3 1.9
    4 窄带 694 13.7 10.8 1.6
    5 窄带 608 13.1 10.3 1.7
    DownLoad: CSV
  • [1]

    吴钟书, 赵耀, 翁苏明, 陈民, 盛政明 2019 物理学报 68 195202Google Scholar

    Wu Charles F, Zhao Y, Weng S M, Chen M, Sheng Z M 2019 Acta Phys. Sin. 68 195202Google Scholar

    [2]

    Seaton A, Arber T 2020 Phys. Plasmas 27 082704Google Scholar

    [3]

    Myatt J, Zhang J, Short R, Maximov A, Seka W, Froula D, Edgell D, Michel D, Igumenshchev I, Hinkel D 2014 Phys. Plasmas 21 055501Google Scholar

    [4]

    Pak A, Divol L, Kritcher A, Ma T, Ralph J, Bachmann B, Benedetti L, Casey D, Celliers P, Dewald E 2017 Phys. Plasmas 24 056306Google Scholar

    [5]

    Lushnikov P M, Rose H A 2006 Plasma Phys. Controlled Fusion 48 1501Google Scholar

    [6]

    Edwards M, Patel P, Lindl J, Atherton L, Glenzer S, Haan S, Kilkenny J, Landen O, Moses E, Nikroo A 2013 Phys. Plasmas 20 070501Google Scholar

    [7]

    Turnbull D, Michel P, Ralph J, Divol L, Ross J, Hopkins L B, Kritcher A, Hinkel D, Moody J 2015 Phys. Rev. Lett. 114 125001Google Scholar

    [8]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [9]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [10]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [11]

    Ruyer C, Debayle A, Loiseau P, Masson-Laborde P, Fuchs J, Casanova M, Marquès J, Romagnani L, Antici P, Bourgeois N 2021 Phys. Plasmas 28 052701Google Scholar

    [12]

    Michel P, Rosenberg M, Seka W, Solodov A, Short R, Chapman T, Goyon C, Lemos N, Hohenberger M, Moody J 2019 Phys. Rev. E 99 033203Google Scholar

    [13]

    余诗瀚, 李晓锋, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [14]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, d'Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [15]

    Sarri G, Cecchetti C, Jung R, Hobbs P, James S, Lockyear J, Stevenson R, Doria D, Hoarty D, Willi O 2011 Phys. Rev. Lett. 106 095001Google Scholar

    [16]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龙韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学, 力学, 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang Y L, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [17]

    赵耀, 郑君, 於陆勒, 陈民, 翁苏明, 盛政明 2015 中国科学: 物理学, 力学, 天文学 45 035201Google Scholar

    Zhao Y, Zheng J, Yu L Q, Chen M, Weng S M, Sheng Z M 2015 Sci. Sin-Phys. Mech. Astron. 45 035201Google Scholar

    [18]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z, Zhang J 2017 Phys. Plasmas 24 112102Google Scholar

    [19]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled Fusion 61 115008Google Scholar

    [20]

    Zhou H, Xiao C, Zou D, Li X, Yin Y, Shao F, Zhuo H 2018 Phys. Plasmas 25 062703Google Scholar

    [21]

    Bates J, Follett R, Shaw J, Obenschain S, Myatt J, Weaver J, Wolford M, Kehne D, Myers M, Kessler T 2023 Phys. Plasmas 30 052703Google Scholar

    [22]

    刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平 2024 物理学报 73 055202Google Scholar

    Liu Q K, Zhang X, Cai H B, Zhang E H, Gao Y Q, Zhu S P 2024 Acta Phys. Sin. 73 055202Google Scholar

    [23]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. Extremes 5 065201Google Scholar

    [24]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extremes 9 015602Google Scholar

    [25]

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [26]

    Rosenberg M, Hernandez J, Butler N, Filkins T, Bahr R, Jungquist R, Bedzyk M, Swadling G, Ross J, Michel P 2021 Rev. Sci Instrum. 92 033511Google Scholar

    [27]

    Moody J, Williams E, Glenzer S, Young P, Hawreliak J, Gouveia A, Wark J 2003 Phys. Rev. Lett. 90 245001Google Scholar

    [28]

    Froula D, Divol L, Meezan N, Dixit S, Neumayer P, Moody J, Pollock B, Ross J, Suter L, Glenzer S 2007 Phys. Plasmas 14 055705Google Scholar

    [29]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

  • [1] Long Xin-Yu, Xiong Jun, An Hong-Hai, Xie Zhi-Yong, Wang Pei-Pei, Fang Zhi-Heng, Wang Wei, Sun Jin-Ren, Wang Chen. Broadband laser driven near-forward scattering light of planar film target. Acta Physica Sinica, 2024, 73(22): 225202. doi: 10.7498/aps.73.20240823
    [2] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [3] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [4] Wu Charles F., Zhao Yao, Weng Su-Ming, Chen Min, Sheng Zheng-Ming. Nonlinear evolution of stimulated scattering near 1/4 critical density. Acta Physica Sinica, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [5] Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [6] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [7] Li Zhan-Long, Wang Yi-Ding, Zhou Mi, Men Zhi-Wei, Sun Cheng-Lin, Li Zuo-Wei. Stimulated Raman scattering in liquid water in a low-frequency region. Acta Physica Sinica, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [8] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [9] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [10] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [11] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [12] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] Hasi Wu-Li-Ji, Lü Zhi-Wei, Teng Yun-Peng, Liu Shu-Jie, Li Qiang, He Wei-Ming. Study on stimulated Brillouin scattering pulse waveform. Acta Physica Sinica, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [14] Liu Lan-Qin, Su Jing-Qin, Luo Bin, Wang Wen-Yi, Jing Feng, Wei Xiao-Feng. Physical modeling of broadband pulsed laser amplification process based on hybrid-widened linewidth. Acta Physica Sinica, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [15] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [16] Deng Shao-Yong, Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai. Influence of pump laser parameters on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [17] Pu Xiao-Yun, Yang Rui, Wang Ya-Li, Chen Tian-Jiang, Jiang Nan. Enhancement of stimulated Raman scattering of minority species of binary mixture in pendant drops by dye lasing gain. Acta Physica Sinica, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [18] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [19] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] Zhang Xi-He, Wang Zhao-Min, Wan Chun-Ming. . Acta Physica Sinica, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
Metrics
  • Abstract views:  2076
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  07 October 2023
  • Accepted Date:  27 March 2024
  • Available Online:  08 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回