Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong HE Xingdao SHI jiulin

Citation:

Study on the time-domain pulse characteristics of stimulated Brillouin scattering ocean lidar

JIA Xiaohong, HE Xingdao, SHI jiulin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Stimulated Brillouin Scattering Lidar (SBS-LiDAR) technology possesses significant advantages such as high resolution, high signal-to-noise ratio, and strong anti-interference capacity, making it highly promising for simultaneous measurements of temperature, salinity, and sound velocity in seawater. SBS is a nonlinear dynamic process characterized by temporal variations in its occurrence location, peak intensity, and spectral shape. Through numerical simulations of Stokes pulse, we can quantitatively determine the conditions for SBS generation, thereby establishing a theoretical foundation for optimizing lidar systems and enhancing their detection capabilities. Existing studies on Stokes pulses typically focus on specific experimental configurations under varying parameters, including medium properties, pump laser characteristics, and ambient environmental factors. There remains significant discrepancies in reported conclusions regarding the relationship between incident energy levels and pulse width variations, particularly in water-based environments where systematic investigations on Stokes scattering pulse characteristics are notably absent. In this study, based on a distributed noise model, we conducted theoretical simulations and analyses of the time-domain signals of SBS in water for different laser wavelengths, pulse widths, and focal lengths. We investigated the characteristics of Stokes pulses generated by both focused and non-focused configurations. The results indicate that shorter incident wavelength produces significantly higher peak power of Stokes scattered light under the same conditions. The Stokes scattered light exhibits distinct energy-dependent behavior: at low input energies, short pulses generate stronger scattered signals due to enhanced nonlinear interaction efficiency, whereas at high input energies, longer pulses exhibit superior performance by maintaining temporal coherence. The larger focal lengths result in lower peak power but better pulse fidelity. As the incident energy increases, the pulse width of Stokes scattered light in the non-focused configuration exhibits a continuous increase. In contrast, for the focused configuration, the pulse width initially decreases and then increases, exhibiting an optimal compression value influenced by temperature and energy. At lower temperatures, the Stokes pulse width exhibits superior compression performance near the threshold energy. Therefore, for short-range SBS-Lidar applications, mitigation of secondary peak interference and suppression of spectral broadening are critical technical challenges that must be systematically addressed. In low-temperature detection scenarios, dynamic attenuation control becomes essential to prevent thermal stress-induced damage to photodetectors. These findings are of great significance for enhancing the performance of SBS-LiDAR system.
  • [1]

    Shen Y R 1984 The principles of nonlinear optics

    [2]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M G M, McCrea I, Bamford R, Mendonça J T, Bingham R 2021 Nat. Commun 12 6209

    [3]

    Zhao Y, Lei A, Kang N, Li F, Li X, Liu H, Lin Z, Yin H, Xu Y, Yi Y, Xu Z 2024 Phys. Rev. E 110 065206

    [4]

    Gonzalez-Herraez M, Song K-Y, Thévenaz L 2005 Appl. Phys. Lett. 87 081113

    [5]

    Wei W, Yi L, Jaouèn Y, Morvan M, Weisheng H 2015 Opto-Electronics and Communications Conference (OECC), 28 June-2 July 2015 p1-3

    [6]

    Ballmann C W, Thompson J V, Traverso A J, Meng Z, Scully M O, Yakovlev V V 2015 Sci. Rep. 5 18139

    [7]

    Ballmann C W, Meng Z, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124

    [8]

    Shi J, Ouyang M, Gong W, Li S, Liu D 2008 Appl. Phys. B 90 569

    [9]

    Shi J, Xu J, Guo Y, Luo N, Li S, He X 2021 Phys. Rev. Appl 15 054024

    [10]

    Xu N, Liu Z, Zhang X, Xu Y, Luo N, Li S, Xu J, He X, Shi J 2021 Opt. Express 29 36442

    [11]

    Shi J, Xu N, Luo N, Li S, Xu J, He X 2022 Opt. Express 30 16419

    [12]

    Maier M, Rother W, Kaiser W 1967 Appl. Phys. Lett. 10 80

    [13]

    Hon D T 1981 Opt. Lett. 5 516

    [14]

    Eichler H J, Menzel R, Sander R, Smandek B 1992 Opt. Commun 89 260

    [15]

    Xu D 2008 M.S. Thesis (Hangzhou: Zhejiang University) (in Chinese) [徐德 2008 硕士学位论文 (杭州:浙江大学)]

    [16]

    Liu Z H 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) 刘照虹 2018 博士学位论文 (哈尔滨:哈尔滨工业大学)

    [17]

    Hasi W L J, Lv Z W, Teng Y P, Liu S J, Li Q, He W M 2007 Acta Phys. Sin. 56 878 (in Chinese) [哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明 2007 物理学报 56 878]

    [18]

    Guo S F, Lu Q S, Li Q, Cheng X A, Deng S Y, Zeng X W 2004 HPLPB 16 09 (in Chinese) [郭少锋, 陆启生, 李强, 程湘爱, 邓少永, 曾学文 2004 强激光与粒子束 16 09]

    [19]

    Deng S Y, Guo S F, Lu Q S, Cheng X A 2005 Acta Phys. Sin. 54 3164 (in Chinese) [邓少永, 郭少锋, 陆启生, 程湘爱 2005 物理学报 54 3164]

    [20]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410

    [21]

    Gong H P, Lü Z W, Lin D Y, Liu S J 2007 Acta Phys. Sin. 56 5263 (in Chinese) [龚华平, 吕志伟, 林殿阳, 刘松江 2007 物理学报 56 5263]

    [22]

    Zhu L, Bai Z, Chen Y, Jin D, Fan R, Qi Y, Ding J, Yan B, Wang Y, Lu Z 2022 Opt. Commun 515 128205

    [23]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A 42 5514

    [24]

    Levent S 2014 Electromagnetic Modeling and Simulation (IEEE) pp407-513

    [25]

    Schiemann S, Ubachs W, Hogervorst W 1997 IEEE J. Quantum Electron. 33 358

    [26]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 15 054024

    [27]

    Feng C, Xu X, Diels J-C 2017 Opt. Express 25 12421

    [28]

    Hirschberg J G, Byrne J D, Wouters A W, Boynton G C 1984 Appl. Opt. 23 2624

    [29]

    Millard R C, Seaver G 1990 Deep-Sea Res. Pt. A 37 1909

    [30]

    Roquet F, Madec G, McDougall T J, Barker P M 2015 Ocean Model. 90 29

    [31]

    Damzen M J, Vlad V, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications pp1-190

  • [1] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, doi: 10.7498/aps.73.20231613
    [2] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.67.20172679
    [3] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.67.20180486
    [4] Zhang Lei, Li Jin-Zeng. An unusual pulse compression of stimulated Brillouin scattering in water. Acta Physica Sinica, doi: 10.7498/aps.63.054202
    [5] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, doi: 10.7498/aps.62.015205
    [6] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, doi: 10.7498/aps.62.094215
    [7] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, doi: 10.7498/aps.61.115202
    [8] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, doi: 10.7498/aps.61.030702
    [9] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, doi: 10.7498/aps.61.110701
    [10] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, doi: 10.7498/aps.60.060704
    [11] Chen Xu-Dong, Shi Jin-Wei, Liu Juan, Liu Bao, Xu Yan-Xia, Shi Jiu-Lin, Liu Da-He. Amplification of stimulated Brillouin scattering by collinear laser pulse series with two orthogonal polarizations. Acta Physica Sinica, doi: 10.7498/aps.59.1047
    [12] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, doi: 10.7498/aps.57.260
    [13] Lü Yue-Lan, Lü Zhi-Wei, Dong Yong-Kang. Controlling the optical limiting shape in stimulated Brillouin scattering by dye absorption. Acta Physica Sinica, doi: 10.7498/aps.56.5849
    [14] Hasi Wu-Li-Ji, Lü Zhi-Wei, Teng Yun-Peng, Liu Shu-Jie, Li Qiang, He Wei-Ming. Study on stimulated Brillouin scattering pulse waveform. Acta Physica Sinica, doi: 10.7498/aps.56.878
    [15] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, doi: 10.7498/aps.55.983
    [16] Lü Yue-Lan, Dong Yong-Kang, Lü Zhi-Wei. Study on the control of optical limiting of pulse-shape in stimulated Brillouin scattering process. Acta Physica Sinica, doi: 10.7498/aps.55.5247
    [17] Deng Shao-Yong, Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai. Influence of pump laser parameters on stimulated Brillouin scattering. Acta Physica Sinica, doi: 10.7498/aps.54.3164
    [18] He Wei-Ming, Yang Jun, Lü Yue-Lan, Lü Zhi-Wei. The influences of seed on stimulated Brillouin scattering pulse shape fidelity in seeded single-cell. Acta Physica Sinica, doi: 10.7498/aps.53.468
    [19] Lü Yue-Lan, Lü Zhi-Wei, Dong Yong-Kang. Nonlinear propagation and power limiting of nanosecond laser pulse by stimulated Brillouin scattering in CCl4. Acta Physica Sinica, doi: 10.7498/aps.53.2170
    [20] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, doi: 10.7498/aps.52.1184
Metrics
  • Abstract views:  74
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  04 March 2025

/

返回文章
返回