Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier

Su Rong-Tao Zhang Peng-Fei Zhou Pu Xiao Hu Wang Xiao-Lin Duan Lei Lü Pin Xu Xiao-Jun

Citation:

Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier

Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Narrow-linewidth nanosecond pulsed Raman fiber amplifiers possess many applications such as in nonlinear frequency generation, remote sensing and quantum information. By considering nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), self-phase modulation (SPM) and cross-phase modulation (XPM), we build a nonlinear dynamical model of narrow-linewidth nanosecond pulsed Raman fiber amplifier. A numerical simulation model is also built and the simulation is carried out based on the parallelizable bidirectional finite difference time-domain method. The pulse evolution processes in time and spectral domain are simulated. The influences of pump pulse width, fiber length and signal laser power are studied in detail. It is found that SRS peak power threshold is not influenced by pump pulse width, however, pump pulse width will affect SBS threshold and output linewidth. When the pump pulse width is 800 ns, tens of MHz narrow linewidth can be obtained, but the SBS occurs as the increasing of pump energy, which limits the power scaling of the narrow-linewidth laser pulses. When the pump pulse width is 80 ns, the SBS is effectively suppressed and the peak power can be further increased, but the linewidth of output laser is easily broadened to hundreds of MHz. The simulation results also show that lower SRS threshold and higher efficiency can be obtained by using longer passive fiber, however, if shorter passive fiber is used, SPM and XPM can be weakened and narrower linewidth can be obtained. We build an experimental setup to study the influence of fiber length. In our experiment, a polarization-maintained passive fiber with a core diameter of 10 m and core numerical aperture of 0.08 is used as the Raman gain fiber. The signal laser is a 1120 nm single frequency continuous wave fiber laser with an average power of 20 mW, and the pump laser is a 1064 nm pulsed laser with a pulse width of~40 ns and repetition rate of 500 kHz. When the fiber lengths are 100 m and 80 m, the efficiencies of the pulsed Raman amplifier are, respectively, 51.5% and 38.2% at a pump power of 6.8 W. It can also be found that increasing signal power can increase the efficiency of the amplifier, but it will reduce the SBS threshold at the same time. Therefore, in order to balance the different nonlinear effects in the arrow-linewidth nanosecond pulsed Raman fiber amplifier, we should take laser power, linewidth and efficiency into consideration, and choose the suitable system parameters such as pump pulse width, fiber length and signal power. These analyses can serve as design guidelines for narrow-linewidth nanosecond pulsed fiber Raman amplifiers.
      Corresponding author: Su Rong-Tao, surongtao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61705265, 61705264), the China Postdoctoral Science Foundation (Grant No. 2017M620070), and the National Key RD Program of China (Grant Nos. 2017YFF0104603, 2016YFB0402204).
    [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [2]

    Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063

    [3]

    Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940

    [4]

    Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49

    [5]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [6]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [7]

    Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297

    [8]

    Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451

    [9]

    Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722

    [10]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297

    [11]

    Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038

    [12]

    Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796

    [13]

    Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456

    [14]

    Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808

    [15]

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 物理学报 59 3942]

    [16]

    Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864

    [17]

    Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4

    [18]

    Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]

    [19]

    Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201

    [20]

    Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085

    [21]

    Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214

    [22]

    Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933

    [23]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514

  • [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [2]

    Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063

    [3]

    Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940

    [4]

    Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49

    [5]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [6]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [7]

    Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297

    [8]

    Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451

    [9]

    Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722

    [10]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297

    [11]

    Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038

    [12]

    Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796

    [13]

    Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456

    [14]

    Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808

    [15]

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 物理学报 59 3942]

    [16]

    Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864

    [17]

    Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4

    [18]

    Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]

    [19]

    Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201

    [20]

    Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085

    [21]

    Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214

    [22]

    Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933

    [23]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514

  • [1] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [3] Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen. Near forward scattering light of planar film target driven by broadband laser. Acta Physica Sinica, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [4] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [6] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [9] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [10] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [11] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [12] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [13] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [14] Deng Li, Sun Zhen-Rong, Lin Wei-Zhu, Wen Jin-Hui. The stimulated Raman scattering and the four wave mixing in the generation of sub-10 fs pulses. Acta Physica Sinica, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [15] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [16] Stimulated Raman scattering mode competition in C6H12 under different pump wavelength. Acta Physica Sinica, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [17] Pu Xiao-Yun, Yang Rui, Wang Ya-Li, Chen Tian-Jiang, Jiang Nan. Enhancement of stimulated Raman scattering of minority species of binary mixture in pendant drops by dye lasing gain. Acta Physica Sinica, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [18] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [19] Pu Xiao-Yun, Yang Zheng, Jiang Nan, Chen Yong-Kang, Dai Hong. Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain. Acta Physica Sinica, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] Zhang Xi-He, Wang Zhao-Min, Wan Chun-Ming. . Acta Physica Sinica, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
Metrics
  • Abstract views:  7043
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2017
  • Accepted Date:  24 February 2018
  • Published Online:  05 August 2018

/

返回文章
返回