-
Stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are two kinds of emblematic inelastic scattering processes resulting from the interaction of high-intensity laser with matter. Generally, competition between SBS and SRS is a common phenomenon in many substances. In liquid or high-pressure gas, if a single longitudinal mode laser is used as a pump source, both SBS and SRS can be excited, but the SBS will become very strong due to higher gain and optical phase conjugation. In comparison, the SRS gain is typically 2 orders of magnitude smaller than the SBS gain so that most of the pump laser energy is spent on the SBS and the SRS is greatly suppressed. To improve the output energy of SRS in liquid medium, a method of suppressing the SBS process by controlling temperature of medium is proposed. The SRS generation system using broadband pulse laser of 532 nm in wavelength as a pumping source is designed, the output energy of forward SRS (FSRS) and backward SBS (BSBS) in water with different temperatures are measured, and the physical mechanisms of the influences of water temperature, pumping linewidth and thermal defocusing on the output energy of SRS are analyzed. The experimental results indicate that by reducing the water temperature, the SBS process can be significantly suppressed, and the beam distortion caused by thermal defocusing effect can be reduced, thus effectively improving the output energy of SRS. Unlike the single longitudinal mode laser, when the pump source is handled in multiple longitudinal modes with a wide linewidth, the gain of FSRS is higher than that of the backward SRS (BSRS). Meanwhile, since the SBS gain coefficient is restricted by the linewidth of the pump laser, the FSRS process is dominant and both backward SBS and BSRS are significantly suppressed. It is necessary to state that none of the influence of backward SRS, self-focusing, optical breakdown and other non-linear effects on the output energy of SRS is considered in this paper, and only the effectiveness of reducing temperature to improve the energy output of forward SRS is verified from the perspective of temperature change. The results are of great significance for the multi-wavelength conversion of SRS in liquid medium.
-
Keywords:
- stimulated Raman scattering /
- stimulated Brillouin scattering /
- energy amplification /
- thermal defocusing
[1] Boyd R W 2008 Nonlinear Optics (Third Edition) (Burlington: Academic Press) pp 429-471
[2] Penzkofer A, Laubereau A, Kaiser W 1979 Prog. Quant. Electron. 6 55Google Scholar
[3] Pasiskevicius V, Fragemann A, Laurell F, Butkus R, Smilgevicius V, Piskarskas A 2003 Appl. Phys. Lett. 82 325Google Scholar
[4] Kalosha V P, Herrmann J 2000 Phys. Rev. Lett. 85 1226Google Scholar
[5] Findeisen J, Eichler H J, Kaminskii A A 1998 Nonlinear Optics 98: Materials, Fundamentals and Applications Topical Meeting (Cat. No. 98CH36244), USA, August 10-14, 1998 p381
[6] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar
Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao T D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar
[7] Vasa N J, Hatada A, Nakazono S, Oki Y, Maeda M 2002 Appl. Opt. 41 2328Google Scholar
[8] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟 2013 物理学报 62 104213Google Scholar
Chen W, Chen X G, Shi J L, He X D, Mo X F, Liu J 2013 Acta Phys. Sin. 62 104213Google Scholar
[9] Woodbury E J, Ng W K 1962 Proc. Inst. Rad. Eng. 50 2367
[10] Ganot Y, Bar I 2015 Appl. Phys. Lett. 107 131108Google Scholar
[11] Ganot Y, Shrenkel S, Barmashenko B D, Bar I 2014 Appl. Phys. Lett. 105 061107Google Scholar
[12] Helle M H, Jones T G, Penano J R, Kaganovich D, Ting A 2013 Appl. Phys. Lett. 103 121101Google Scholar
[13] Shi J, Chen W, Mo X, Liu J, He X, Yang K 2012 Opt. Lett. 37 2988Google Scholar
[14] Walsh C J, Villeneuve D M, Baldis H A 1984 Phys. Rev. Lett. 53 1445Google Scholar
[15] Snow J B, Qian S X, Chang R K 1985 Opt. Lett. 10 37Google Scholar
[16] Yehud L B, Belker D, Ravnitzki G, Ishaaya A A 2014 Opt. Lett. 39 1026Google Scholar
[17] Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar
[18] He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar
[19] Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009 Opt. Lett. 34 977Google Scholar
[20] Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys. Rev. A 80 033808Google Scholar
[21] Shi J L, Liu J, Li S J, Jian X, Jian L, Wei F, Ke Y, He X D 2011 J. Opt. 13 075201Google Scholar
[22] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Pub.) pp 39-50
[23] Colles M J 1969 Opt. Commun. 1 169Google Scholar
[24] Richerzhagen B, Delacretaz G, Salathe R P 1996 Opt. Eng. 35 2058Google Scholar
[25] Abbate G, Bernini U, Ragozzino E, Somma F 1978 J. Phy. D: Appl. Phys. 11 1167Google Scholar
-
-
[1] Boyd R W 2008 Nonlinear Optics (Third Edition) (Burlington: Academic Press) pp 429-471
[2] Penzkofer A, Laubereau A, Kaiser W 1979 Prog. Quant. Electron. 6 55Google Scholar
[3] Pasiskevicius V, Fragemann A, Laurell F, Butkus R, Smilgevicius V, Piskarskas A 2003 Appl. Phys. Lett. 82 325Google Scholar
[4] Kalosha V P, Herrmann J 2000 Phys. Rev. Lett. 85 1226Google Scholar
[5] Findeisen J, Eichler H J, Kaminskii A A 1998 Nonlinear Optics 98: Materials, Fundamentals and Applications Topical Meeting (Cat. No. 98CH36244), USA, August 10-14, 1998 p381
[6] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar
Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao T D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar
[7] Vasa N J, Hatada A, Nakazono S, Oki Y, Maeda M 2002 Appl. Opt. 41 2328Google Scholar
[8] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟 2013 物理学报 62 104213Google Scholar
Chen W, Chen X G, Shi J L, He X D, Mo X F, Liu J 2013 Acta Phys. Sin. 62 104213Google Scholar
[9] Woodbury E J, Ng W K 1962 Proc. Inst. Rad. Eng. 50 2367
[10] Ganot Y, Bar I 2015 Appl. Phys. Lett. 107 131108Google Scholar
[11] Ganot Y, Shrenkel S, Barmashenko B D, Bar I 2014 Appl. Phys. Lett. 105 061107Google Scholar
[12] Helle M H, Jones T G, Penano J R, Kaganovich D, Ting A 2013 Appl. Phys. Lett. 103 121101Google Scholar
[13] Shi J, Chen W, Mo X, Liu J, He X, Yang K 2012 Opt. Lett. 37 2988Google Scholar
[14] Walsh C J, Villeneuve D M, Baldis H A 1984 Phys. Rev. Lett. 53 1445Google Scholar
[15] Snow J B, Qian S X, Chang R K 1985 Opt. Lett. 10 37Google Scholar
[16] Yehud L B, Belker D, Ravnitzki G, Ishaaya A A 2014 Opt. Lett. 39 1026Google Scholar
[17] Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar
[18] He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar
[19] Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009 Opt. Lett. 34 977Google Scholar
[20] Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys. Rev. A 80 033808Google Scholar
[21] Shi J L, Liu J, Li S J, Jian X, Jian L, Wei F, Ke Y, He X D 2011 J. Opt. 13 075201Google Scholar
[22] Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Pub.) pp 39-50
[23] Colles M J 1969 Opt. Commun. 1 169Google Scholar
[24] Richerzhagen B, Delacretaz G, Salathe R P 1996 Opt. Eng. 35 2058Google Scholar
[25] Abbate G, Bernini U, Ragozzino E, Somma F 1978 J. Phy. D: Appl. Phys. 11 1167Google Scholar
Catalog
Metrics
- Abstract views: 7836
- PDF Downloads: 57
- Cited By: 0