Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber

Li Xue-Jian Cao Min Tang Min Mi Yue-An Tao Hong Gu Hao Ren Wen-Hua Jian Wei Ren Guo-Bin

Citation:

Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber

Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin
PDF
HTML
Get Citation
  • Stimulated Brillouin scattering (SBS) in a few-mode fiber (FMF) is of significance for the distributed temperature and strain sensing. An FMF with M-shaped refractive index distribution (M-FMF) is proposed in order to improve the performance of simultaneous temperature and strain sensing based on SBS. Propagation of four optical modes is supported by the M-FMF, so that the Brillouin gain spectrum (BGS) can be obtained by both intra-mode and inter-mode SBS. The BGSs produced by the interactions of LP01-LP01 mode pair, LP01-LP11 mode pair, and LP11-LP11 mode pair are analyzed, respectively. Meanwhile, the temperature and strain sensing performance based on the BGS of LP01-LP11 mode pair are studied in detail. Considering a common step-index FMF, only one obvious scattering peak is usually present in the BGS obtained from the interaction between different optical mode pairs, therefore, it is inconvenient to achieve multi-parameter sensing measurement. In this paper, the BGS of LP01-LP11 mode pair has two scattering peaks, which are contributed by the acousto-optic coupling between the acoustic modes L1n (n = 1, 2) and the optical modes LP01 and LP11. The two Brillouin scattering peaks have large gain values of 0.1004 m–1·W–1 and 0.0463 m–1·W–1, respectively. More importantly, the gain difference between two Brillouin scattering peaks is small, and the frequency interval is 75 MHz, which can be applied to simultaneous temperature and strain sensing. The influences of the refractive index and the fiber core radius on the BGS of LP01-LP11 mode pair are studied. By selecting the optimal structure parameters, we discuss the effect of temperature and strain on the BGS of LP01-LP11 mode pair. The errors for simultaneous temperature and strain measurement are reduced to 0.23 ℃ and 5.67 με. Compared with other reported results, our obtained temperature and strain sensitivity are high and sensing errors are low in the considered M-FMF. In other words, based on the BGS of LP01-LP11 mode pair, the performance of temperature and strain sensing are improved in the M-FMF. This work is of great significance for studying intra-mode and inter-mode SBS in an FMF. Moreover, the results also provide a guideline for further improving the performance of simultaneous temperature and strain sensing.
      Corresponding author: Ren Guo-Bin, gbren@bjtu.edu.cn
    [1]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle A C, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697Google Scholar

    [3]

    Smith S P, Zarinetchi F, Ezekiel S 1991 Opt. Lett. 16 393Google Scholar

    [4]

    Cowie G J, Yu D, Chieng Y T 1997 J. Lightwave Technol. 15 1198Google Scholar

    [5]

    Li B W, Wei X M, Wang X, Wong K K Y 2014 IEEE Photonics Technol. Lett. 26 2387Google Scholar

    [6]

    Alahbabi M N, Cho Y T, Newson T P 2004 Opt. Lett. 29 26Google Scholar

    [7]

    Zadok A, Zilka E, Eyal A, Thévenaz L, Tur M 2008 Opt. Express 16 21692Google Scholar

    [8]

    刘玉 2012 硕士学位论文 (陕西: 西北大学)

    Liu Y 2012 M.S. Dissertation (Shanxi: Northwest University) (in Chinese)

    [9]

    Herráez M G, Song K Y, Thévenaz L 2006 Opt. Express 14 1395Google Scholar

    [10]

    Loayssa A, Benito D, Garde M J 2000 Opt. Lett. 25 1234Google Scholar

    [11]

    Preussler S, Schneider T 2015 Opt. Eng. 55 031110Google Scholar

    [12]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [13]

    Krug B, Koukourakis N, Czarske J W 2019 Opt. Express 27 26910Google Scholar

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

    [15]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Technol. 22 631Google Scholar

    [16]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [17]

    Zou L F, Bao X Y, Afshar S, Chen L 2004 Opt. Lett. 29 1485Google Scholar

    [18]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photonics Technol. Lett. 1 107Google Scholar

    [19]

    Mocofanescu A, Wang L, Jain R, Shaw K D, Gavrielides A, Peterson P, Sharma M P 2005 Opt. Express 13 2019Google Scholar

    [20]

    Floch S L, Cambon P 2003 J. Opt. Soc. Am. A 20 1132Google Scholar

    [21]

    王振宝, 邵碧波, 张磊, 闫燕, 杨鹏翎, 陈绍武 2011 激光与光电子学进展 48 090603Google Scholar

    Wang Z B, Shao B B, Zhang L, Yan Y, Yang P L, Chen S W 2011 Laser Optoelect. Prog. 48 090603Google Scholar

    [22]

    Afshar S, Kalosha V P, Bao X Y, Chen L 2005 Opt. Lett. 30 2685Google Scholar

    [23]

    Liu A P 2007 Opt. Express 15 977Google Scholar

    [24]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211Google Scholar

    [25]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1955Google Scholar

    [26]

    Xing C, Ke C J, Guo Z, Yang K Y, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [27]

    Xiao S Y, Dong Y, Xiao H, Ren G B, Jian S S 2018 IEEE Sens. J. 18 1087

    [28]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805Google Scholar

    [29]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841Google Scholar

    [30]

    Ke W W, Wang X J, Tang X 2014 IEEE J. Sel. Top. Quantum Electron. 20 305Google Scholar

    [31]

    Minardo A, Bernini R, Zeni L 2014 Opt. Express 22 17480Google Scholar

    [32]

    Song K Y, Kim Y H 2014 Optical Fiber Communications Conference San Francisco, CA, USA, March 9–13, 2014 pW3D.6

    [33]

    张燕君, 高皓雷, 付兴虎, 田永胜 2017 物理学报 66 024207Google Scholar

    Zhang Y J, Gao H L, Fu X H, Tian Y S 2017 Acta Phys. Sin. 66 024207Google Scholar

    [34]

    王旭, 秦祖军, 熊显名, 张文涛 2019 激光与光电子进展 56 162901Google Scholar

    Wang X, Qin Z J, Xiong X M, Zhang W T 2019 Laser Optoelect. Prog. 56 162901Google Scholar

    [35]

    Lü H B, Zhou P, Wang X L, Jiang Z F 2015 J. Lightwave Technol. 33 4464Google Scholar

    [36]

    Zou W W, He Z Y, Hotate K 2009 Opt. Express 17 1248Google Scholar

    [37]

    Xu Y P, Ren M Q, Lu Y, Lu P, Lu P, Bao X Y, Wang L X, Messaddeq Y, Larochelle S 2016 Opt. Lett. 41 1138Google Scholar

    [38]

    Zhou X, Guo Z, Ke C J, Liu D M 2016 IEEE Photonics Conference(IPC) Waikoloa, HI, October 2–6, 2016 p817

    [39]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [40]

    Fang J, Milione G, Stone J, Peng G Z, Li M J, Ip E, Li Y W, Ji P N, Huang Y K, Huang M F, Murakami S, Shieh W, Wang T 2019 Opt. Lett. 44 1096Google Scholar

    [41]

    Weng Y, Ip E, Pan Z Q, Wang T 2015 Opt. Express 23 9024Google Scholar

  • 图 1  SI-FMF中${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对的BGS (插图为SI-FMF的结构分布)

    Figure 1.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair in SI-FMF (Inset: The structure of SI-FMF).

    图 2  M-FMF的结构分布以及光学模式的模场分布 (a) M-FMF的结构分布; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (d) ${\rm{L}}{{\rm{P}}_{{\rm{21}}}}$; (e) ${\rm{L}}{{\rm{P}}_{{\rm{02}}}}$

    Figure 2.  The structure of M-FMF and the field distribution of optical modes in M-FMF: (a) The structure of M-FMF: (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (d) ${\rm{L}}{{\rm{P}}_{{\rm{21}}}}$; (e) ${\rm{L}}{{\rm{P}}_{{\rm{02}}}}$.

    图 3  不同光学模式对的BGS (a) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}\text-{\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$

    Figure 3.  The BGS of different optical mode pairs: (a) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}\text-{\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$.

    图 4  M-FMF的结构对${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对BGS的影响 (a) n1; (b) n2; (c) r1; (d) r2

    Figure 4.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair in M-FMF versus: (a) n1; (b) n2; (c) r1; (d) r2.

    图 5  ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对激励的声学模式的位移场分布 (a) ${{\rm{L}}_{{\rm{11}}}}$; (b) ${{\rm{L}}_{{\rm{12}}}}$

    Figure 5.  The displacement field distribution of acoustic mode excited by the interaction of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair: (a) ${{\rm{L}}_{{\rm{11}}}}$; (b) ${{\rm{L}}_{{\rm{12}}}}$.

    图 6  ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对的BGS随温度和应变的变化 (a) BGS随温度的变化; (b) BGS随应变的变化

    Figure 6.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair versus: (a) Temperature; (b) strain.

    图 7  声学模式${{\rm{L}}_{{\rm{11}}}}$${{\rm{L}}_{{\rm{12}}}}$对应散射峰的BFS随温度和应变的变化 (a) BFS随温度的变化关系; (b) BFS随应变的变化关系

    Figure 7.  The BFS corresponding to ${{\rm{L}}_{{\rm{11}}}}$ and ${{\rm{L}}_{{\rm{12}}}}$ acoustic modes versus: (a) Temperature; (b) strain.

    表 1  不同光学模式对与声学模式之间相互耦合的声光有效面积(单位: μm2)

    Table 1.  Acousto-optic effective area by the coupling between different optical mode pairs and acoustic modes (in μm2).

    LP01-LP01LP01-LP11LP11-LP11
    m = 0 m = 1m = 0m = 2
    Lm1251.63208.71156.24180.74
    Lm2162.48449.521.65 × 1031.09 × 103
    Lm32.12 × 1054.54 × 1043.82 × 1031.11 × 104
    DownLoad: CSV

    表 2  不同研究报道中基于SBS的温度应变系数和误差

    Table 2.  The coefficients and errors of temperature and strain based on SBS in different literatures.

    Fiber$C_T^1$/MHz·℃–1$C_T^2$/MHz·℃–1$C_S^1$/MHz·℃–1$C_S^2$/MHz·℃–1δT/℃δS/με
    M-FMF4.34003.93150.193730.177150.235.67
    M-SMF[25]1.51871.16420.066400.052800.4712.30
    SSMF[26]1.19001.15000.062280.050090.9319.48
    SMF[27]1.19001.11900.035600.040300.9028.80
    IPGIF[37]0.743230.90160.042020.038250.8517.40
    GIFMF[38]5.27004.3000.237000.189001.8041.00
    c-core FMF[39]1.01690.99090.059240.048721.2021.90
    e-core FMF[40]1.24201.27800.061300.036400.377.61
    DownLoad: CSV
  • [1]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle A C, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697Google Scholar

    [3]

    Smith S P, Zarinetchi F, Ezekiel S 1991 Opt. Lett. 16 393Google Scholar

    [4]

    Cowie G J, Yu D, Chieng Y T 1997 J. Lightwave Technol. 15 1198Google Scholar

    [5]

    Li B W, Wei X M, Wang X, Wong K K Y 2014 IEEE Photonics Technol. Lett. 26 2387Google Scholar

    [6]

    Alahbabi M N, Cho Y T, Newson T P 2004 Opt. Lett. 29 26Google Scholar

    [7]

    Zadok A, Zilka E, Eyal A, Thévenaz L, Tur M 2008 Opt. Express 16 21692Google Scholar

    [8]

    刘玉 2012 硕士学位论文 (陕西: 西北大学)

    Liu Y 2012 M.S. Dissertation (Shanxi: Northwest University) (in Chinese)

    [9]

    Herráez M G, Song K Y, Thévenaz L 2006 Opt. Express 14 1395Google Scholar

    [10]

    Loayssa A, Benito D, Garde M J 2000 Opt. Lett. 25 1234Google Scholar

    [11]

    Preussler S, Schneider T 2015 Opt. Eng. 55 031110Google Scholar

    [12]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [13]

    Krug B, Koukourakis N, Czarske J W 2019 Opt. Express 27 26910Google Scholar

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

    [15]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Technol. 22 631Google Scholar

    [16]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [17]

    Zou L F, Bao X Y, Afshar S, Chen L 2004 Opt. Lett. 29 1485Google Scholar

    [18]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photonics Technol. Lett. 1 107Google Scholar

    [19]

    Mocofanescu A, Wang L, Jain R, Shaw K D, Gavrielides A, Peterson P, Sharma M P 2005 Opt. Express 13 2019Google Scholar

    [20]

    Floch S L, Cambon P 2003 J. Opt. Soc. Am. A 20 1132Google Scholar

    [21]

    王振宝, 邵碧波, 张磊, 闫燕, 杨鹏翎, 陈绍武 2011 激光与光电子学进展 48 090603Google Scholar

    Wang Z B, Shao B B, Zhang L, Yan Y, Yang P L, Chen S W 2011 Laser Optoelect. Prog. 48 090603Google Scholar

    [22]

    Afshar S, Kalosha V P, Bao X Y, Chen L 2005 Opt. Lett. 30 2685Google Scholar

    [23]

    Liu A P 2007 Opt. Express 15 977Google Scholar

    [24]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211Google Scholar

    [25]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1955Google Scholar

    [26]

    Xing C, Ke C J, Guo Z, Yang K Y, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [27]

    Xiao S Y, Dong Y, Xiao H, Ren G B, Jian S S 2018 IEEE Sens. J. 18 1087

    [28]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805Google Scholar

    [29]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841Google Scholar

    [30]

    Ke W W, Wang X J, Tang X 2014 IEEE J. Sel. Top. Quantum Electron. 20 305Google Scholar

    [31]

    Minardo A, Bernini R, Zeni L 2014 Opt. Express 22 17480Google Scholar

    [32]

    Song K Y, Kim Y H 2014 Optical Fiber Communications Conference San Francisco, CA, USA, March 9–13, 2014 pW3D.6

    [33]

    张燕君, 高皓雷, 付兴虎, 田永胜 2017 物理学报 66 024207Google Scholar

    Zhang Y J, Gao H L, Fu X H, Tian Y S 2017 Acta Phys. Sin. 66 024207Google Scholar

    [34]

    王旭, 秦祖军, 熊显名, 张文涛 2019 激光与光电子进展 56 162901Google Scholar

    Wang X, Qin Z J, Xiong X M, Zhang W T 2019 Laser Optoelect. Prog. 56 162901Google Scholar

    [35]

    Lü H B, Zhou P, Wang X L, Jiang Z F 2015 J. Lightwave Technol. 33 4464Google Scholar

    [36]

    Zou W W, He Z Y, Hotate K 2009 Opt. Express 17 1248Google Scholar

    [37]

    Xu Y P, Ren M Q, Lu Y, Lu P, Lu P, Bao X Y, Wang L X, Messaddeq Y, Larochelle S 2016 Opt. Lett. 41 1138Google Scholar

    [38]

    Zhou X, Guo Z, Ke C J, Liu D M 2016 IEEE Photonics Conference(IPC) Waikoloa, HI, October 2–6, 2016 p817

    [39]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [40]

    Fang J, Milione G, Stone J, Peng G Z, Li M J, Ip E, Li Y W, Ji P N, Huang Y K, Huang M F, Murakami S, Shieh W, Wang T 2019 Opt. Lett. 44 1096Google Scholar

    [41]

    Weng Y, Ip E, Pan Z Q, Wang T 2015 Opt. Express 23 9024Google Scholar

  • [1] Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui. Tunable continuous domain bound states based on Fabry-Perot cavities and their applications. Acta Physica Sinica, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] Yang Xi-Fei, Shang Lei, Zou Lin-Er, Shen Yun. Study on backward stimulated Brillouin scattering of chalcogenide inverted-ridge optical waveguide with air slot. Acta Physica Sinica, 2024, 73(1): 014206. doi: 10.7498/aps.73.20231272
    [3] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [4] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [5] Xu Jin, Guo Yang-Ning, Luo Ning-Ning, Li Shu-Jing, Shi Jiu-Lin, He Xing-Dao. Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering. Acta Physica Sinica, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [6] Tu Xing-Hua, Zhao Yi-Chao. Temperature and stress sensing characteristics of symmetrically fused tapered fiber grating. Acta Physica Sinica, 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [7] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [8] Zhang Yan-Jun, Gao Hao-Lei, Fu Xing-Hu, Tian Yong-Sheng. Characterization of Brillouin scattering in a few-mode fiber. Acta Physica Sinica, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [12] Gao Wei, Liu Sheng-Nan, Bi Ya-Feng, Hu Xiao-Bo, Pu Shao-Zhi, Zhao Hong. Flat-top Brillouin gain spectrum with a controllable bandwidth produceal from multiple-lines pump modulation in liquid-core optical fibers. Acta Physica Sinica, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [13] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [14] He Xing-Dao, Xia Jian, Shi Jiu-Lin, Liu Juan, Li Shu-Jing, Liu Jian-An, Fang Wei. Influences of effective gain length and attenuation coefficient on output energy of stimulated Brillouin scattering in water. Acta Physica Sinica, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [15] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Optimization of medium and control characteristics of stimulated Brillouin scattering based on mixed media. Acta Physica Sinica, 2011, 60(3): 034208. doi: 10.7498/aps.60.034208
    [16] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Investigation on stimulated Brillouin scattering medium——perfluoropolyether at high and low temperatures. Acta Physica Sinica, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [17] Wang Sha, Chen Jun, Tong Li-Xin, Gao Qing-Song, Liu Chong, Tang Chun. Experimental and theoretical investigation of fused silica rod-fiber phase conjugator. Acta Physica Sinica, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [18] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [19] Deng Shao-Yong, Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai. Influence of pump laser parameters on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] Lin Dian-Yang, Gao Hong-Yan, Wang Shuang-Yi, Jiang Xiao-Cun, Lü Zhi-Wei. Threshold of stimulated Brillouin scattering pumped by a multi-longitudinal mode laser. Acta Physica Sinica, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
Metrics
  • Abstract views:  7238
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2020
  • Accepted Date:  12 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回