Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering

Xu Jin Guo Yang-Ning Luo Ning-Ning Li Shu-Jing Shi Jiu-Lin He Xing-Dao

Citation:

Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering

Xu Jin, Guo Yang-Ning, Luo Ning-Ning, Li Shu-Jing, Shi Jiu-Lin, He Xing-Dao
PDF
HTML
Get Citation
  • Stimulated Brillouin scattering (SBS) is a typical inelastic scattering effect generated by the interaction between intense incident laser and the acoustic wave field in medium and has always been an active research topic in nonlinear optics. The SBS can be used as a novel LIDAR technology for active optical remote sensing of temperature and sound speed structure in ocean. Although, the threshold value and gain property of SBS at normal temperature are studied, none of the threshold values and gain coefficients of SBS at different temperatures, pressures and attenuation coefficients has been investigated in detail. Further, neither the relation between threshold value and water pressure nor the relation between gain coefficient and water pressure is clear now, and little work has been reported. The theoretical and experimental studies of the influence of water parameters on the threshold value and gain coefficient of SBS are still scanty. In this paper, the effects of temperature, pressure and attenuation coefficient of water on threshold value and gain coefficient of SBS are studied theoretically and experimentally. Theoretically, the variations of threshold value and gain coefficient of SBS with temperature, pressure and attenuation coefficient are analyzed by the average attenuation coefficient method based on the distributed noise model (DNM) and coupled wave equations. The temporal waveforms of Stokes-, pump- and transmission-beam at different water parameters are obtained by using the DNM. Experimentally, a temperature-pressure controlled simulator is designed to obtain the threshold values and gain coefficients of SBS in water at different temperatures, pressures and attenuation coefficients through measuring the change of attenuation coefficient of laser pulses. The results indicate that (i) the threshold value of SBS increases with pressure increasing at the same temperature and decreases with temperature increasing at the same pressure; (ii) the threshold value is positively correlated with the attenuation coefficient at the same temperature and pressure; (iii) the gain coefficient of SBS increases with temperature increasing at the same pressure and decreases with pressure increasing at the same temperature. We also find that the temperature and attenuation coefficient have greater effect on threshold value and gain coefficient of SBS than the water pressure. The studied results are of great significance in realizing the ocean remote sensing by SBS lidar.
      Corresponding author: Shi Jiu-Lin, jiulinshi@126.com ; He Xing-Dao, xingdaohe@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41776111, 61865013), the National Key R&D Program of China (Grant No. 2018YFE0115700), and the Defense Industrial Technology Development Program of China (Grant No. JCKY2019401D002)
    [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42

    [2]

    Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20

    [3]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [4]

    Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar

    [5]

    Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar

    [6]

    Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar

    [7]

    Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar

    [8]

    Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [9]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar

    [10]

    Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar

    [11]

    Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar

    [12]

    Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar

    [13]

    Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar

    [14]

    Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64

    [15]

    Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar

    [16]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar

    [17]

    Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar

    [18]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar

    [20]

    Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar

    [21]

    Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar

    [22]

    Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [23]

    Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar

    [24]

    Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar

    [25]

    Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar

    [26]

    Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar

    [27]

    Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar

  • 图 1  布里渊散射的产生过程

    Figure 1.  Process of Brillouin scattering.

    图 2  激光器泵浦能量分别为60, 70, 80 mJ时, 泵浦光、Stokes光和透射光的波形

    Figure 2.  Temporal waveforms of pump, Stokes and transmission laser beams at the pump energy of 60, 70, 80 mJ.

    图 3  不同温度、压强和衰减系数下泵浦光和Stokes光的波形

    Figure 3.  Temporal waveforms of pump and Stokes laser beams at different temperatures, pressures and attenuation coefficients.

    图 4  水中SBS阈值随水体参数的变化 (a) 25 ℃, 稳态阈值; (b) 25 ℃, 瞬态阈值; (c) 0 MPa, 稳态阈值; (d) 0 MPa, 瞬态阈值; (e) 0.25 m–1, 稳态阈值; (f) 0.25 m–1, 瞬态阈值

    Figure 4.  Simulation values of steady- and transient-state threshold value of SBS at different water parameters: (a) 25 ℃, steady-state; (b) 25 ℃, transient-state; (c) 0 MPa, steady-state; (d) 0 MPa, transient-state; (e) 0.25 m–1, steady-state; (f) 0.25 m–1, transient-state.

    图 5  泵浦光在水中的衰减系数 (a) 25 ℃, 2 MPa; (b) 25 ℃, 4 MPa

    Figure 5.  Measured attenuation coefficient of pulsed laser beams in water: (a) 25 ℃, 2 MPa; (b) 25 ℃, 4 MPa.

    图 6  不同水体参数下SBS阈值的实验测量结果 (a) $\alpha =0.25\;{\mathrm{m}}^{-1}$; (b) T = 25 ℃

    Figure 6.  Experimental measured values of threshold value of SBS in water at different water parameters: (a) $\alpha =0.25\;{\mathrm{m}}^{-1}$, (b) T = 25 ℃.

    图 7  不同水体参数下SBS阈值的实验测量与理论仿真结果对比 (a)相同衰减系数、不同温度; (b)相同温度、不同衰减系数; (c)相同压强和衰减系数、不同温度

    Figure 7.  Comparison of experimental measurements with theoretical simulations of SBS threshold at different water parameters: (a) Different temperatures at the same attenuation coefficient; (b) different attenuation coefficients at the same temperature; (c) different temperatures at the same pressure and attenuation coefficient.

    图 8  不同温度及压强下SBS增益的理论仿真与实验测量结果 (a), (b)实验值; (c), (d)理论值

    Figure 8.  Comparison of experimental measurements with theoretical simulations of gain coefficient in water at different temperatures and pressures: (a), (b) Experimental values; (c), (d) theoretical values.

  • [1]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Publishing) pp1−42

    [2]

    Bloembergen N 1965 Nonlinear Optics (New York: Benjamin) pp12−20

    [3]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [4]

    Yuan H, Wang Y L, Lu Z W, Zheng Z X 2018 Opt. Lett. 43 511Google Scholar

    [5]

    Choudhary A, Liu Y, Marpaung D, Eggleton B J 2018 IEEE J. Sel. Top. Quantum Electron. 24 7600211Google Scholar

    [6]

    Jiang H, Yan L, Pan W, Luo B, Zou X 2018 Opt. Lett. 43 279Google Scholar

    [7]

    Du C, Zhou W N, Wang Y, Wang M H, Wang D, Wang K J, Dong W, Zhang X D 2018 Opt. Lett. 43 4915Google Scholar

    [8]

    Remer I, Shaashoua R, Shemesh N, Zvi A B, Bilenca A 2020 Nat. Methods 17 913Google Scholar

    [9]

    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C, Roscini L, Corte L, Cardinali G, Palombo F, Sandercock J R, Fioretto D 2017 Phys. Rev. X 7 031015Google Scholar

    [10]

    Yuan D P, Xu J, Liu Z, Hao S G, Shi J L, Luo N N, Li S J, Liu J, Wan S P, He X D 2018 Opt. Commun. 427 27Google Scholar

    [11]

    Liu D H, Xu J F, Li R S, Dai R, Gong W P 2002 Opt. Commun. 203 335Google Scholar

    [12]

    Shi J L, Ouyang M, Gong W P, Li S, Liu D H 2008 Appl. Phys. B 90 569Google Scholar

    [13]

    Shi J L, Tang Y J, Wei H J, Zhang Lei, Zhang D, Shi J W, Gong W P, He X D, Yang K C, Liu D H 2012 Appl. Phys. B 108 717Google Scholar

    [14]

    Zel'dovich B Y, Pilipetsky N F, Shkunov V V 1985 Principles of Phase Conjugation (New York: Springer Verlag Berlin Heidelberg) pp25−64

    [15]

    Boyd R W, Rzazewski K B 1990 Phys. Rev. A 42 5514Google Scholar

    [16]

    Gaeta A L, Boyd R W 1991 Phys. Rev. A 44 3205Google Scholar

    [17]

    Nguen-Vo N M, Pfeifer S J 1993 IEEE J. Quantum Electron. 29 508Google Scholar

    [18]

    徐德 2008 硕士学位论文 (杭州: 浙江大学)

    Xu D 2008 M. S. Thesis (Hangzhou: Zhejiang University) (in Chinese)

    [19]

    Park H, Lim C, Yoshida H, Nakatsuka M 2006 Jpn. J. Appl. Phys. 45 5073Google Scholar

    [20]

    Först P, Werner F, Delgado A 2000 Rheol. Acta. 39 566Google Scholar

    [21]

    Tanaka Y, Matsuda Y, Fujiwara H, Kubota H, Makita T 1987 Int. J. Thermophys. 8 147Google Scholar

    [22]

    Grosso V A D 1974 J. Acoust. Soc. Am. 56 1084Google Scholar

    [23]

    Hasi W L J, Guo X, LU H H, Fu M L, Gong S, Geng X Z, Lu Z W, Lin D Y, He W M 2009 Laser Part. Beams 27 733Google Scholar

    [24]

    Afshaarvahid S, Devrelis V, Munch J 1998 Phys. Rev. A 57 3961Google Scholar

    [25]

    Hagknlocker E, Minck R, Rado W 1967 Phys. Rev. A 154 226Google Scholar

    [26]

    Shi J, Chen X, Ouyang M, Liu J, Liu D H 2009 Appl. Phys. B 95 657Google Scholar

    [27]

    Bai J H, Liu J, Huang Y, Liu Y N, Sun L, Liu D H, Fry E S 2007 Appl. Opt. 46 6804Google Scholar

  • [1] Feng Yun-Long, Hou Shang-Lin, Lei Jing-Li, Wu Gang, Yan Zu-Yong. Analysis of acoustic modes induced by backward stimulated Brillouin scattering in acoustic wave-guided single mode optical fibers. Acta Physica Sinica, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao. Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water. Acta Physica Sinica, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [3] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [4] Zhang Lei, Li Jin-Zeng. An unusual pulse compression of stimulated Brillouin scattering in water. Acta Physica Sinica, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [6] Liu Zhan-Jun, Hao Liang, Xiang Jiang, Zheng Chun-Yang. Hybrid simulation of stimulated Brillouin scattering in laser fusions. Acta Physica Sinica, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [7] Geng Xi-Zhao, Hasi Wu-Li, Guo Xiang-Yu, Li Xing, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing, Lü Zhi-Wei. Study on measuring the kinematic viscosity of liquid medium based on the energy reflectivity of SBS. Acta Physica Sinica, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [8] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Optimization of medium and control characteristics of stimulated Brillouin scattering based on mixed media. Acta Physica Sinica, 2011, 60(3): 034208. doi: 10.7498/aps.60.034208
    [9] He Xing-Dao, Xia Jian, Shi Jiu-Lin, Liu Juan, Li Shu-Jing, Liu Jian-An, Fang Wei. Influences of effective gain length and attenuation coefficient on output energy of stimulated Brillouin scattering in water. Acta Physica Sinica, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [10] Hasi Wu-Li-Ji, Li Xing, Guo Xiang-Yu, Lu Huan-Huan, Lü Zhi-Wei, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing. Investigation on stimulated Brillouin scattering medium——perfluoropolyether at high and low temperatures. Acta Physica Sinica, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [11] Liu Juan, Bai Jian-Hui, Ni Kai, Jing Hong-Mei, He Xing-Dao, Liu Da-He. Attenuation characteristics of laser beam in water. Acta Physica Sinica, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [12] Guo Shao-Feng, Lin Wen-Xiong, Lu Qi-Sheng, Chen Sui, Lin Zong-Zhi, Deng Shao-Yong, Zhu Yong-Xiang. Experimental research on stimulated Brillouin scattering in fused silica glass. Acta Physica Sinica, 2007, 56(4): 2218-2222. doi: 10.7498/aps.56.2218
    [13] Wang Yu-Lei, Lü Zhi-Wei, He Wei-Ming, Zhang Yi. Investigation on a high energy stimulated Brillouin scattering phase-conjugate mirror. Acta Physica Sinica, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [14] Hasi Wu-Li-Ji, Lü Zhi-Wei, Teng Yun-Peng, Liu Shu-Jie, Li Qiang, He Wei-Ming. Study on stimulated Brillouin scattering pulse waveform. Acta Physica Sinica, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] Hasi Wu-Li-Ji, Lü Zhi-Wei, Li Qiang, Ba De-Xin, Zhang Yi, He Wei-Ming. Research on optical breakdown of SBS media. Acta Physica Sinica, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [16] Hasi Wu-Li-Ji, Lü Zhi-Wei, He Wei-Ming, Li Qiang, Ba De-Xin. Influences of optical breakdown on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [17] Deng Shao-Yong, Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai. Influence of pump laser parameters on stimulated Brillouin scattering. Acta Physica Sinica, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [18] Lin Dian-Yang, Gao Hong-Yan, Wang Shuang-Yi, Jiang Xiao-Cun, Lü Zhi-Wei. Threshold of stimulated Brillouin scattering pumped by a multi-longitudinal mode laser. Acta Physica Sinica, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
    [19] Lü Yue-Lan, Lü Zhi-Wei, Dong Yong-Kang. Nonlinear propagation and power limiting of nanosecond laser pulse by stimulated Brillouin scattering in CCl4. Acta Physica Sinica, 2004, 53(7): 2170-2174. doi: 10.7498/aps.53.2170
    [20] Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai, Zhou Ping, Deng Shao-Yong, Yin Yan. Influence of Stokes component in reflected light on stimulated Brillouin scattering process. Acta Physica Sinica, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
Metrics
  • Abstract views:  4952
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2021
  • Accepted Date:  14 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回