Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study on microdischarge via a unified fluid model

Wang Zhen Zhao Zhi-Hang Fu Yang-Yang

Citation:

Numerical simulation study on microdischarge via a unified fluid model

Wang Zhen, Zhao Zhi-Hang, Fu Yang-Yang
PDF
Get Citation
  • Numerical simulation has become an indispensable tool in the study of gas discharge. However, it is typically employed to reveal microscopic properties in a discharge under specific conditions. In this work, a unified fluid model for discharge simulation is introduced in detail. The model includes the continuity equation, the energy conservation equation of the species (electrons and heavy particles), and Poisson's equation. The model takes into account processes such as cathode electron emission (secondary electron emission and thermal emission), reaction enthalpy change, gas heating, and cathode heat conduction. The full CVC curve encompasses a range of discharge regimes, such as the Geiger-Muller regime, Townsend discharge, subnormal glow discharge, normal glow discharge, abnormal glow discharge, and arc discharge. The obtained CVC curve is consistent with the results in the literature, confirming the validity of the unified fluid model. On this basis, the CVC curves are obtained at a wide range of pressures (50 Torr-3000 Torr) conditions. Simulation studies are conducted with a focus on the discharge characteristics for microgap of 400 μm and at pressures of 50 Torr and 500 Torr, respectively. The distributions of typical discharge parameters under different pressure conditions are analyzed by comparison. The results indicate that the electric field in the discharge gap is uniform in the Townsend discharge regime, and the space charge effect can be ignored. The cathode fall and the quasi-neutral regions appear in the glow discharge, and the space charge effect is significant. In particular, the electric field reversal occurs in the abnormal discharge regime due to the heightened particle density gradient. The electron density reaches approximately 1022 m-3 in the arc discharge regime dominated by thermal emission and thermal ionization, as the increase of the current density. The gas temperature peak is 11850 K when the pressure is 500 Torr, and the cathode surface temperature is heated to 400 K due to heat conduction. The present model can realize the simulation of gas discharge across a wide range of condition parameter regimes, which promotes and expands the application of fluid models and aids in achieving a more comprehensive investigation of discharge parameter properties.
  • [1]

    Hara K, Hanquist K 2018 Plasma Sources Sci. Technol. 27 065004

    [2]

    Campanell M D, Johnson G R 2019 Phys. Rev. Lett. 122 015003

    [3]

    Nanbu K 1980 J. Phys. Soc. Jpn. 49 2042

    [4]

    Wilczek S, Schulze J, Brinkmann R P, Donkó Z, Trieschmann J, Mussenbrock T 2020 J. Appl. Phys. 127 181101

    [5]

    Donkó Z, Derzsi A, Vass M, Horváth B, Wilczek S, Hartmann B, Hartmann P 2021 Plasma Sources Sci. Technol. 30 095017

    [6]

    Petrović Z L, Škoro N, Marić D, Mahony C M O, Maguire P D, Radmilović-Rađenović M, Malović G 2008 J. Phys. D: Appl. Phys. 41 194002

    [7]

    Yang D, Wang H H, Zheng B C, Zou X B, Wang X X, Fu Y Y 2023 Phys. Plasmas 30 063510

    [8]

    Yang D, Wang H H, Zheng B C, Liu Z G, Fu Y Y 2023 Plasma Sources Sci. Technol. 32 10LT01

    [9]

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014 Acta Phys. Sin. 63 095206. (in Chinese) [付洋洋,罗海云,邹晓兵,王强,王新新 2014 物理学报 63 9]

    [10]

    Zhao Z H, Wei X L, Guan R Y, Nie H Y, Zhu B, Yao Y H 2022 IEEE Trans. Plasma Sci. 50 2333

    [11]

    Zhang X N, Li H P, Murphy A B, Xia W S 2013 High Voltage Eng. 39 1640. (in Chinese) [张晓宁,李和平, A. B. Murphy,夏维生 2013 高电压技术 39 7]

    [12]

    Surendra M, Graves D B, Jellum G M 1990 Phys. Rev. A 41 1112

    [13]

    Fiala A, Pitchford L C, Boeuf J P 1994 Phys. Rev. E 49 5607

    [14]

    Farouk T, Farouk B, Staack D, Gutsol A, Fridman A 2006 Plasma Sources Sci. Technol. 15 676

    [15]

    Bogaerts A, Gijbels R, Goedheer W J 1996 Anal. Chem. 68 2296

    [16]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [17]

    Chen S, Nobelen J, Nijdam S 2017 Plasma Sources Sci. Technol. 26 095005

    [18]

    Chen S, Li K, Nijdam S 2018 Plasma Sources Sci. Technol. 28 055017

    [19]

    Wang L, Chen S, Wang F 2019 Plasma Chem. Plasma Process. 39 1291

    [20]

    Liu F C, Guo X, Zhou Z X, He Y F, Fan W L 2019 Phys. Plasmas 26 123505

    [21]

    Marić D, Hartmann P, Malović G, Donkó Z, Petrović Z L 2003 J. Phys. D: Appl. Phys. 36 2639

    [22]

    Zhu Y F, Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007

    [23]

    Wu Y, Zhu Y F, Cui W, Jia M, Li Y H 2015 Plasma Processes Polym. 12 642

    [24]

    Chen X C, Zhu Y F, Wu Y, Su Z, Liang H 2020 Plasma Processes Polym. 53 465202

    [25]

    Babaeva N Y, Kushner M J 2009 J. Phys. D: Appl. Phys. 42 132003

    [26]

    Babaeva N Y, Naidis G V 2016 Phys. Plasmas 23 083527

    [27]

    Nijdam S, Teunissen J, Ebert U 2020 Plasma Sources Sci. Technol. 29 103001

    [28]

    Luque A, Ratushnaya V, Ebert U 2008 J. Phys. D: Appl. Phys. 41 234005

    [29]

    Yan W, Economou D J 2017 J. Phys. D: Appl. Phys. 50 415205

    [30]

    Jiang Y Y, Wang Y H, Zhang J, Wang D Z 2022 J. Phys. D: Appl. Phys. 55 335203

    [31]

    Kolobov V I, Fiala A 1994 Phys. Rev. E 50 3018

    [32]

    Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986

    [33]

    Eliseev S I, Kudryavtsev A A, Liu H, Ning Z X, Yu D R, Chirtsov A S 2016 IEEE Trans. Plasma Sci. 44 2536

    [34]

    Fu Y Y, Zhang P, Verboncoeur J P 2018 Appl. Phys. Lett. 112 254102

    [35]

    Fu Y Y, Zhang P, Krek J, Verboncoeur J P 2019 Appl. Phys. Lett. 114 014102

    [36]

    Fu Y Y, Wang H H, Zheng B C, Zhang P, Fan Q H, Wang X X, Verboncoeur J P 2021 Appl. Phys. Lett. 118 401

    [37]

    Fu Y Y, Krek J, Zhang P, Verboncoeur J P 2018 IEEE Trans. Plasma Sci. 47 2011

    [38]

    Chen J D, Verboncoeur J P, Fu Y Y 2022 Appl. Phys. Lett. 121 074102

    [39]

    Baeva M, Loffhagen D, Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 1359

    [40]

    Baeva M, Loffhagen D, Becker M M, Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 949

    [41]

    Baeva M, Uhrlandt D, Loffhagen D 2020 Jpn. J. Appl. Phys. 59 SHHC05

    [42]

    Saifutdinov A I, Fairushin I I, Kashapov N F 2016 JETP Lett. 104 180

    [43]

    Saifutdinov A I 2021 J. Appl. Phys. 129 093302

    [44]

    Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008

    [45]

    Wang D Z, Yuan B W, Lu Q, Qiao J J, Xiong Q 2023 Trans. China Electrotech. Soc. 38 2541. (in Chinese) [王大智,袁博文,卢琪,乔俊杰,熊青 2023 电工技术学报 38 09]

    [46]

    Bogaerts A, Gijbels R 1999 J. Appl. Phys. 86 4124

    [47]

    Hayashi M 2003 Japan: N. p.

    [48]

    Cunningham A J, O’Malley T F, M H R 1981 J. Phys. B: At. Mol. Phys. 14 773

    [49]

    Jonkers J, Sande M v d, Sola A, Gamero A, Rodero A, Mullen J v d 2003 Plasma Sources Sci. Technol. 12 464

    [50]

    Niu C, Hu Y H, Shao K, Sun S R, Wang H X 2022 Plasma Chem. Plasma Process. 42 885

    [51]

    Kolokolov N B, Kudrjavtsev A A, Blagoev A B 1994 Phys. Scr. 50 371

    [52]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [53]

    Karoulina E V, Lebedev Y A 1992 J. Phys. D: Appl. Phys. 25 401

    [54]

    Kannari F, Suda A, Obara M, Fujioka T 1983 IEEE J. Quantum Electron. 19 1587

    [55]

    Gregório J, Leprince P, Boisse-Laporte C, Alves L L 2012 Plasma Sources Sci. Technol. 21 015013

    [56]

    Rafatov I, Bogdanov E A, Kudryavtsev A A 2012 Phys. Plasmas 19 033502

    [57]

    Kolokolov N B, Blagoev A B 1993 Phys.-Usp. 36 152

    [58]

    Beulens J J, Milojevic D, Schram D C, Vallinga P M 1991 Phys. Fluids B 3 2548–2557

    [59]

    Du S G 1998 Plasma Physics (Beijing: Atomic Press), pp 160–163. (in Chinese) [杜世刚 1998 等离子体物理 (北京:原子能出版社) 160-163 页]

    [60]

    Bird R B, Steward W E, Lightfoot E N 2001 Transport phenomena (Hoboken: Wiley)

    [61]

    Chapman S, Cowling T G 1995 The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (Cambridge: Cambridge university Press), p 167

    [62]

    Zhang D H Y, Liu J B, Fu Y Y 2024 Acta Phys. Sin. 73 025201. (in Chinese) [张东荷 雨,刘金宝,付洋洋 2024 物理学报 73 2]

    [63]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. Dev. 8 240

    [64]

    Neufeld P D, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [65]

    Gurvich L V, Veyts I V, Alcock C B 1989 Thermodynamic properties of individual substances, vol 1, Part 2 Tables, 4th edn (Washington: Hemisphere Publishing Corp), pp 135–138

    [66]

    Maltsev M A, Morozov I V, Osina E L 2019 High Temp. 57 37

    [67]

    Liu F C, Yan W, Wang D Z 2013 Acta Phys. Sin. 62 175204. (in Chinese) [刘富成,晏 雯,王德真 2013 物理学报 62 17]

    [68]

    Incropera F P, DeWitt D P, Bergmann T L, Lavine A S 2007 Fundamentals of heat and mass transfer (New York: John Wiley)

    [69]

    Touloukian Y S, Powell R W, Ho C Y, Clemens P G 1970 Thermal conductivity: metallic elements and alloys (thermophysical properties of matter) (New York: Plenum Press)

    [70]

    Brown S B 1959 Basic Data of Plasma Physics (New York: John Wiley and Sons, Inc.), pp 167–211

    [71]

    Schottky W 1914 Ann. Phys. 44 1011

    [72]

    Yang J J 1983 Gas Discharge (Beijing: Science Press), p 50. (in Chinese) [杨津基 1983 气体放电 (北京:科学出版社) 第 50 页]

    [73]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747. (in Chinese) [邵先 军,马跃,李娅西,张冠军 2010 物理学报 59 12]

    [74]

    Arslanbekov R R, Kolobov V I 2003 J. Phys. D: Appl. Phys. 36 2986

    [75]

    COMSOL A B COMSOL Multiphysics® v. 6.1. Stockholm, Sweden

    [76]

    Si Ma W X, Peng Q J, Yang Q, Yuan T, Shi J 2012 IEEE Trans. Dielectr. Electr. Insul. 19 660

    [77]

    Zhuang Y, Chen G, Rotaru M 2011 J. Phys: Conference Series 310 012011

    [78]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag), pp 167–211

    [79]

    Gudmundsson J T, Hecimovic A 2017 Plasma Sources Sci. Technol. 26 123001

    [80]

    Paschen F 1889 Ann. Phys. 273 69

    [81]

    Xu X J, Zhu D C 1996 Gas Discharge Physics (Shanghai: Fudan University Press), pp 121–126. (in Chinese) [徐学基,诸定昌 1996 气体放电物理 (上海:复旦大学出版社) 第 121-126 页]

    [82]

    Townsend J S 1900 Nature 62 340–341

    [83]

    Yue Q Y, Jin H 1988 Radiat. Prot. 6 401. (in Chinese) [岳清宇,金花 1988 辐射防护 6 1]

    [84]

    Lü B, Wang X X, Luo H Y, Liang Z 2009 Chin. Phys. B 18 646

    [85]

    Liang X D, Zhou Y X, Zeng R 2015 High Voltage Engineering (Second Edition) (Beijing: Tsinghua University Press), pp 17–18. (in Chinese) [梁曦东,周远翔,曾嵘 2015 高电压 工程(第 2 版) (北京:清华大学出版社) 第 17-18 页]

    [86]

    Bouchikhi A, Hamid A 2010 Plasma Sci. Technol. 12 59

    [87]

    Levko D, Subramaniam V, Raja L L 2022 Phys. Plasmas 29 023503

    [88]

    Bogaerts A, Neyts E, Gijbels R, Van d M J 2002 Spectrochim. Acta, Part B 57 609

    [89]

    Bogaerts A, Gijbels R, Goedheer W J 1995 J. Appl. Phys. 78 2233

    [90]

    Yao C W, Ma H C, Chang Z S, Li P, Mu H B, Zhang G J 2017 Acta Phys. Sin. 66 025203. (in Chinese) [姚聪伟,马恒驰,常正实,李平,穆海宝,张冠军 2017 物理学报 66 12]

    [91]

    Montie T C, Kelly-Wintenberg K, Roth J R 2000 IEEE Trans. Plasma Sci. 28 41

    [92]

    Gottscho R A, Mitchell A, Scheller G R, Chan Y Y, Graves D B 1989 Phys. Rev. A 40 6407

    [93]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301

    [94]

    Kolobov V I, Tsendin L D 1992 Phys. Rev. A 46 7837

    [95]

    Boeuf J P, Pitchford L C 1995 J. Phys. D: Appl. Phys. 28 2083

    [96]

    Kudryavtsev A A, Toinova N E 2005 Tech. Phys. Lett. 31 370

    [97]

    Kudryavtsev A A, Nisimov S U, Prokhorova E I, Slyshov A G 2011 Tech. Phys. Lett. 37 838

    [98]

    Kudryavtsev A A, Nisimov S U, Prokhorova E I, Slyshov A G 2012 Tech. Phys. 57 1188

    [99]

    Barzilovich K A, Bogdanov E A, Kudryavtsev A A 2014 Tech. Phys. Lett. 40 581

    [100]

    Marić D, Kutasi K, Malović G, Petrović Z L 2002 Eur. Phys. J. D 21 73

    [101]

    Phelps A V 2001 Plasma Sources Sci. Technol. 10 329

    [102]

    Marić D, Hartmann P, Malović G, Petrović Z L 2003 J. Phys. D: Appl. Phys. 36 2639

    [103]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309

  • [1] Zhu Hai-Long, Shi Yu-Jun, Wang Jia-Wei, Zhang Zhi-Ling, Gao Yi-Ning, Zhang Feng-Bo. Formation and evolution of striation plasma in high-pressure argon glow discharge. Acta Physica Sinica, doi: 10.7498/aps.71.20212394
    [2] Zheng Jian-Dong, Zhou Jiang, Pi Xiao-Li, Zou Chen, Li Yi-Fan, Xu Kun-Bo, Gong Zi-Zheng, Hu Guo-Jie. Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun. Acta Physica Sinica, doi: 10.7498/aps.70.20210458
    [3] Li Xue-Chen, Geng Jin-Ling, Jia Peng-Ying, Wu Kai-Yue, Jia Bo-Yu, Kang Peng-Cheng. Rotating characteristics of glow discharge filament on liquid electrode surface. Acta Physica Sinica, doi: 10.7498/aps.67.20172205
    [4] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.66.105204
    [5] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, doi: 10.7498/aps.66.025203
    [6] Bai Zhan-Guo, Li Xin-Zheng, Li Yan, Zhao Kun. Numerical analysis on multi-armed spiral patterns in gas discharge system. Acta Physica Sinica, doi: 10.7498/aps.63.228201
    [7] Zhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, Yan Ping. Runaway electron beams in nanosecond-pulse discharges. Acta Physica Sinica, doi: 10.7498/aps.63.085208
    [8] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration. Acta Physica Sinica, doi: 10.7498/aps.63.095206
    [9] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin. Preliminary study on similarity of glow discharges in scale-down gaps. Acta Physica Sinica, doi: 10.7498/aps.62.205209
    [10] Hu Ming, Wan Shu-De, Zhong Lei, Liu Hao, Wang Hai. Magnetic control of the constant-current glow discharge plasma characteristics. Acta Physica Sinica, doi: 10.7498/aps.61.045201
    [11] Yu Zhe, Zhang Zhi-Tao, Yu Qing-Xuan, Xu Shao-Jie, Yao Jing, Bai Min-Dong, Tian Yi-Ping, Liu Kai-Ying. Atmospheric pressure streamer and glow-discharge generated alternately by pin-to-plane dielectric barrier discharge in air. Acta Physica Sinica, doi: 10.7498/aps.61.195202
    [12] He Ya-Feng, Feng Xiao-Min, Zhang Liang. Control of the spatiotemporal pattern with time delayed feedback in a gas discharge system. Acta Physica Sinica, doi: 10.7498/aps.61.245204
    [13] Wu Jin-Ze, Tang Jin-E, Dong You-Er, Zhang Guo-Feng, Wang Yan-Hua. Experimental and theoretical studies on gas discharge and plasma oscillation at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.61.195208
    [14] Zhang Cheng, Shao Tao, Niu Zheng, Zhang Dong-Dong, Wang Jue, Yan Ping. X-ray generation in repetitive pulsed discharge in atmospheric air with a point-to-plane gap. Acta Physica Sinica, doi: 10.7498/aps.61.035202
    [15] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.61.165101
    [16] Li Ying-De, Li Zong-Liang, Leng Jian-Cai, Li Wei, Wang Chuan-Kui. Theoretical study on switching characteristic of photoisomers. Acta Physica Sinica, doi: 10.7498/aps.60.073101
    [17] Ma Song-Shan, Zhu Jia, Xu Hui, Guo Rui. Base pairs composition, on-site energies of electrode and DNA-metal coupling effects on current-voltage characteristic of DNA molecule. Acta Physica Sinica, doi: 10.7498/aps.59.7458
    [18] Zhang Yan, Gu Biao, Wang Wen-Chun, Peng Xu-Wen, Wang De-Zhen. Current-voltage relationship for homogeneous dielectric barrier discharge in helium and nitrogen at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.58.5532
    [19] Ma Yong, Zou Bin, Li Zong-Liang, Wang Chuan-Kui, Luo Yi. Theoretical studies on electronic transport properties of six-membered heterocyclic molecules. Acta Physica Sinica, doi: 10.7498/aps.55.1974
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  135
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Available Online:  09 May 2024

/

返回文章
返回