-
In order to obtain the time-varying information and dynamic characteristics of density fluctuation in compressible turbulence, the wavelet method is used to analyze the flow density field of zero-pressure-gradient flat plate turbulent boundary layer at Ma = 3.0, which is measured based on Nano-tracer plane laser scattering technique. Utilizing Taylor’s frozen hypothesis, the spatial signal of density field converts into the temporal signal. The one-dimensional orthogonal wavelet multi-resolution analysis is used to reveal multi-scale turbulent structures, and the results suggest that large-scale structures play a leading role in the density fluctuation of turbulent boundary layer while the small-scale structures make the probability density function (PDF) of density fluctuation manifested as an “M” distribution. The density fluctuation scalar PDF deviates from Gaussian distribution. The Hilbert transformation is used to analyze amplitude modulation effects between large- and small-scale structure, and the results suggest that positive (negative) large scale density excursion in the outer layer induces local enhancement (suppression) of the small scale density fluctuation in the inner layer near the wall. The time-varying spectral density estimation method based on the wavelet transform is used to analyze the density fluctuation at different heights of turbulent boundary layer after proving its viability in time and frequency domain. The results suggest a wide range of frequencies throughout the turbulent boundary layer, mainly distributed within 1 MHz. The density fluctuation in the dominant frequency band is intermittent, most of which transits from high frequency to low frequency while the spectral density first increases and then decreases. Near the wall, the time-frequency distributions of density fluctuation in the logarithmic layer are similar. In the middle part of the turbulent boundary layer, the frequency distribution and spectral density of the density fluctuation each reach a peak. Near the mainstream region, the spectral density decreases obviously, which is mainly distributed near the structure formed by the interaction between the boundary layer and mainstream. The wall constraint, viscous dissipation, and uniform mainstream make the fluctuation nearby the region relatively weak. As a result, the spectrum amplitude of density fluctuation first increases and then decreases from the wall to the mainstream.
-
Keywords:
- supersonic /
- turbulent boundary layer /
- density fluctuation /
- wavelet transform
[1] Lee C B, Jiang X Y 2019 Phys. Fluids 31 111301Google Scholar
[2] Pan L B, Padoan P, Nordlund A 2018 Astrophys. J. Lett. 866 L17Google Scholar
[3] Pan L B, Padoan P, Nordlund A 2019 Astrophys. J. 881 155Google Scholar
[4] 王正魁, 靳旭红, 朱志斌, 程晓丽 2018 航空学报 39 122244Google Scholar
Wang Z K, Jin X H, Zhu Z B, Cheng X L 2018 Acta Aeronaut. Astronaut. Sin. 39 122244Google Scholar
[5] Tian Y F, Jaberi F A, Livescu D 2019 J. Fluid Mech. 880 935Google Scholar
[6] Parziale N, Shepherd J, Hornung H 2015 J. Fluid Mech. 781 87Google Scholar
[7] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar
[8] 何霖, 易仕和, 陆小革 2017 物理学报 66 024701Google Scholar
He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar
[9] Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357Google Scholar
[10] Morkovin M V 1962 Mécanique de la Turbulence 367 380
[11] Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar
[12] Smith T R, Moehlis J, Holmes P 2005 Nonlinear Dyn. 41 275Google Scholar
[13] Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar
[14] Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comput. Fluid Dyn. 25 249Google Scholar
[15] Ruppert-Felsot J, Farge M, Petitjeans P 2009 J. Fluid Mech. 636 427Google Scholar
[16] 赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 计算科学 53 584Google Scholar
Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China Ser. E: Technol. Sci. 53 584Google Scholar
[17] Rinoshika A, Omori H 2011 Exp. Therm. Fluid Sci. 35 1231Google Scholar
[18] Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702Google Scholar
[19] Freund A, Ferrante A 2019 J. Fluid Mech. 875 914Google Scholar
[20] 赵玉新, 易仕和, 何霖, 田立丰 2010 科学通报 55 2004Google Scholar
Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004Google Scholar
[21] Chen Z, Yi S H, He L, Zhu Y Z, Ge Y, Wu Y 2014 J. Visualization 17 345Google Scholar
[22] Liu X L, Yi S h, Xu X W, Shi Y, Ouyang T C, Xiong H X 2019 Phys. Fluids 31 074108Google Scholar
[23] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China, Ser. G 54 1702Google Scholar
[24] Taylor G I 1938 Proc. R. Soc. London, Ser. A 164 476Google Scholar
[25] Rinoshika A, Zhou Y 2005 J. Fluid Mech. 524 229Google Scholar
[26] Van Doorne C, Westerweel J 2007 Exp. Fluids 42 259Google Scholar
[27] Ganapathisubramani B, Lakshminarasimhan K, Clemens N T 2007 Exp. Fluids 42 923Google Scholar
[28] Vétel J, Garon A, Pelletier D 2010 Exp. Fluids 48 441Google Scholar
[29] 曹晖, 赖明, 白绍良 2004 工程力学 21 109Google Scholar
Cao H, Lai M, Bai S L 2004 Eng. Mech. 21 109Google Scholar
[30] Spanos P D, Failla G 2004 J. Eng. Mech. 130 952Google Scholar
[31] Mouri H, Kubotani H, Fujitani T, Niino H, Takaoka M 1999 J. Fluid Mech. 389 229Google Scholar
[32] Mallat S G 1989 IEEE Trans. Pattern Anal. Mach. Intell. 11 674Google Scholar
[33] Rinoshika A, Watanabe S 2010 Exp. Therm. Fluid Sci. 34 1389Google Scholar
[34] Hutchins N, Marusic I 2007 Philos. Trans. R. Soc. London, Ser. A 365 647Google Scholar
[35] Mathis R, Hutchins N, Marusic I 2009 J. Fluid Mech. 628 311Google Scholar
[36] Mathis R, Monty J P, Hutchins N, Marusic I 2009 Phys. Fluids 21 111703Google Scholar
[37] He G S, Pan C, Feng L H, Gao Q, Wang J J 2016 J. Fluid Mech. 792 274Google Scholar
[38] He G S, Wang J J, Rinoshika A 2019 Phys. Rev. E 99 053105Google Scholar
[39] Gurley K, Kareem A 1999 Eng. Struct. 21 149Google Scholar
[40] 白泉, 边晶梅, 康玉梅 2018 小波理论在工程结构振动分析中的应用 (北京: 清华大学出版社) 第32−49页
Bai Q, Bian J M, Kang Y M 2018 Application of Wavelet Theory in Vibration Analysis of Engineering structures (Beijing: Tsinghua Univesity Press) pp32−49 (in Chinese)
[41] 何霖 2011 博士学位论文 (长沙: 国防科学技术大学)
He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[42] Eswaran V, Pope S 1988 Phys. Fluids 31 506Google Scholar
[43] Antonia R A, Mi J 1993 J. Fluid Mech. 250 531Google Scholar
-
图 7 幅度调制效应分析 (a) 大尺度分量
${d_{\rm{L}}}$ 与小尺度分量${d_{\rm{S}}}$ ; (b) 小尺度分量${d_{\rm{S}}}$ 与低通滤波包络${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ ; (c) 大尺度分量${d_{\rm{L}}}$ 与低通滤波包络${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ (为方便比较, 将${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ 平均值调整到0线并放大2倍)Figure 7. Analysis of amplitude modulation effects: (a) Large scale component
${d_{\rm{L}}}$ and small scale component${d_{\rm{S}}}$ ; (b) small scale component${d_{\rm{S}}}$ and low-pass filtered envelope${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ ; (c) comparison between large scale component${d_{\rm{L}}}$ and low-pass filtered envelope${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ (for comparison, adjust the average of${E_{\rm{L}}}\left( {{d_{\rm{S}}}} \right)$ to the zero-line and magnify the magnitude by a factor of 2).表 1 风洞流场参数
Table 1. Flow conditions
$M{a_\infty }$ ${P_0}/{\rm MPa}$ ${T_0}/{\rm K}$ ${P_\infty }/{\rm Pa}$ ${T_\infty }/{\rm K}$ ${\rho _\infty }/{\rm kg \cdot {m^{ - 3} }}$ ${U_\infty }/{\rm m \cdot {s^{ - 1} }}$ $\mu /{\rm Pa \cdot s}$ ${R_e}/{\rm m^{ - 1} }$ 3.0 0.1 300 2750 107 0.089 622.5 7.43 × 10–6 7.49 × 106 -
[1] Lee C B, Jiang X Y 2019 Phys. Fluids 31 111301Google Scholar
[2] Pan L B, Padoan P, Nordlund A 2018 Astrophys. J. Lett. 866 L17Google Scholar
[3] Pan L B, Padoan P, Nordlund A 2019 Astrophys. J. 881 155Google Scholar
[4] 王正魁, 靳旭红, 朱志斌, 程晓丽 2018 航空学报 39 122244Google Scholar
Wang Z K, Jin X H, Zhu Z B, Cheng X L 2018 Acta Aeronaut. Astronaut. Sin. 39 122244Google Scholar
[5] Tian Y F, Jaberi F A, Livescu D 2019 J. Fluid Mech. 880 935Google Scholar
[6] Parziale N, Shepherd J, Hornung H 2015 J. Fluid Mech. 781 87Google Scholar
[7] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489Google Scholar
[8] 何霖, 易仕和, 陆小革 2017 物理学报 66 024701Google Scholar
He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar
[9] Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. China, Ser. G 52 1357Google Scholar
[10] Morkovin M V 1962 Mécanique de la Turbulence 367 380
[11] Berkooz G, Holmes P, Lumley J L 1993 Annu. Rev. Fluid Mech. 25 539Google Scholar
[12] Smith T R, Moehlis J, Holmes P 2005 Nonlinear Dyn. 41 275Google Scholar
[13] Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar
[14] Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comput. Fluid Dyn. 25 249Google Scholar
[15] Ruppert-Felsot J, Farge M, Petitjeans P 2009 J. Fluid Mech. 636 427Google Scholar
[16] 赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 2010 中国科学: 计算科学 53 584Google Scholar
Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Sci. China Ser. E: Technol. Sci. 53 584Google Scholar
[17] Rinoshika A, Omori H 2011 Exp. Therm. Fluid Sci. 35 1231Google Scholar
[18] Zheng X B, Jiang N 2015 Chin. Phys. B 24 064702Google Scholar
[19] Freund A, Ferrante A 2019 J. Fluid Mech. 875 914Google Scholar
[20] 赵玉新, 易仕和, 何霖, 田立丰 2010 科学通报 55 2004Google Scholar
Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2010 Chin. Sci. Bull. 55 2004Google Scholar
[21] Chen Z, Yi S H, He L, Zhu Y Z, Ge Y, Wu Y 2014 J. Visualization 17 345Google Scholar
[22] Liu X L, Yi S h, Xu X W, Shi Y, Ouyang T C, Xiong H X 2019 Phys. Fluids 31 074108Google Scholar
[23] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Sci. China, Ser. G 54 1702Google Scholar
[24] Taylor G I 1938 Proc. R. Soc. London, Ser. A 164 476Google Scholar
[25] Rinoshika A, Zhou Y 2005 J. Fluid Mech. 524 229Google Scholar
[26] Van Doorne C, Westerweel J 2007 Exp. Fluids 42 259Google Scholar
[27] Ganapathisubramani B, Lakshminarasimhan K, Clemens N T 2007 Exp. Fluids 42 923Google Scholar
[28] Vétel J, Garon A, Pelletier D 2010 Exp. Fluids 48 441Google Scholar
[29] 曹晖, 赖明, 白绍良 2004 工程力学 21 109Google Scholar
Cao H, Lai M, Bai S L 2004 Eng. Mech. 21 109Google Scholar
[30] Spanos P D, Failla G 2004 J. Eng. Mech. 130 952Google Scholar
[31] Mouri H, Kubotani H, Fujitani T, Niino H, Takaoka M 1999 J. Fluid Mech. 389 229Google Scholar
[32] Mallat S G 1989 IEEE Trans. Pattern Anal. Mach. Intell. 11 674Google Scholar
[33] Rinoshika A, Watanabe S 2010 Exp. Therm. Fluid Sci. 34 1389Google Scholar
[34] Hutchins N, Marusic I 2007 Philos. Trans. R. Soc. London, Ser. A 365 647Google Scholar
[35] Mathis R, Hutchins N, Marusic I 2009 J. Fluid Mech. 628 311Google Scholar
[36] Mathis R, Monty J P, Hutchins N, Marusic I 2009 Phys. Fluids 21 111703Google Scholar
[37] He G S, Pan C, Feng L H, Gao Q, Wang J J 2016 J. Fluid Mech. 792 274Google Scholar
[38] He G S, Wang J J, Rinoshika A 2019 Phys. Rev. E 99 053105Google Scholar
[39] Gurley K, Kareem A 1999 Eng. Struct. 21 149Google Scholar
[40] 白泉, 边晶梅, 康玉梅 2018 小波理论在工程结构振动分析中的应用 (北京: 清华大学出版社) 第32−49页
Bai Q, Bian J M, Kang Y M 2018 Application of Wavelet Theory in Vibration Analysis of Engineering structures (Beijing: Tsinghua Univesity Press) pp32−49 (in Chinese)
[41] 何霖 2011 博士学位论文 (长沙: 国防科学技术大学)
He L 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[42] Eswaran V, Pope S 1988 Phys. Fluids 31 506Google Scholar
[43] Antonia R A, Mi J 1993 J. Fluid Mech. 250 531Google Scholar
Catalog
Metrics
- Abstract views: 6935
- PDF Downloads: 103
- Cited By: 0