-
Hypersonic rearward-facing step flow is one of the basic flow problems in the design of engine for endo-atmospheric hypersonic vehicle, including thermal protection, and aero-optical correction for infrared imaging window of hypersonic interceptors, etc. To know the characteristics of hypersonic rearward-facing step flow is of vital importance in improving the performances of vehicles, and understanding the basis of the flow. This paper investigates the characteristics of a two-dimensional hypersonic rearward-facing step flow, measures the surface heat transfer coefficient and the surface static pressure downstream the step, and compares the results with the values predicted using the hypersonic boundary layer theory. And the results are demonstrated by the flow structure visualization using NPLS (nano-based planar laser scattering) technique. It is concluded that for the hypersonic two-dimensional rearward-facing step flow, the surface heat transfer distribution can be determined directly by the boundary layer edge parameters at the step; and the viscous effect dominates the flow characteristic in the separation and reattachment region; whole in the far-field region downstream the step, the heat transfer coefficient approaches an asymptotic value that may be equal to the turbulent flat plate value. Furthermore, the boundary layer structure may depend on the ratio of boundary layer thickness to the height of step. It is concluded that, when studying the problem of hypersonic rearward-facing step using CFD (computational fluid dynamics) technology, choosing an appropriate turbulent model is needed.
-
Keywords:
- hypersonic /
- rearward-facing step /
- heat transfer /
- experiment
[1] Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p1 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第1页]
[2] Chapman D R 1956 A theoretical analysis of heat transfer in regions of separated flow (Moffett Field, California: Ames Aeronautical Laboratory) NACA-TN-3792
[3] Chung P M, Viegas J R 1961 Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers (Washington: AMES Research Center) NASA TN D-1072
[4] Rom J, Seginer 1964 AIAA J. 2 251
[5] Scherberg M G, Smith H E 1967 AIAA J. 5 51
[6] Wada I, Inoue Y 1972 J. Jpn. Soc. Aeronautical Space Sci. 20 661
[7] Gai S L, Reynolds N T, Ross C, Baird J P 1989 J. Fluid Mech. 199 541
[8] Reddeppa P, Nagashetty K, Saravanan S, Jagadeesh G, Gai S L 2011 J. Thermophysics Heat Transfer 25 321
[9] Gai S L, Hayne M J 2010 J. Thermophysics Heat Transfer 24 839
[10] East R A, Stalker R J, Baird J P 1980 J. Fluid Mech. 97 673
[11] Mallinson S G, Gai S L, Mudford N R 1997 J. Fluid Mech. 342 1
[12] Kim T H, Yoshikawa M, Obara T, Ohyagi S 2006 Shock Waves 15 1
[13] Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701]
[14] Fu J 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [付佳 2012 硕士学位论文 (长沙: 国防科学技术大学)]
[15] Schultz D L, Jones T V 1973 Heat Transfer Measurements in Short-duration Hypersonic Facilities (London: University of Oxford) AGARD-AG-165
[16] White F M 2006 Viscous Fluid Flow (3rd Ed.) (Singapore: McGraw Hill) p30
[17] Qu Z H, Zeng M, Liu W, Liu J 1999 Hypersonic Gas Dynamics (Changsha: Press of NUDT) p111 (in Chinese) [瞿章华, 曾明, 刘伟, 柳军 1999 高超声速空气动力学(长沙: 国防科技大学出版社) 第111页]
-
[1] Yin X L 2003 Aero-optical Mechanism (Beijing: China Astronautics Press) p1 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第1页]
[2] Chapman D R 1956 A theoretical analysis of heat transfer in regions of separated flow (Moffett Field, California: Ames Aeronautical Laboratory) NACA-TN-3792
[3] Chung P M, Viegas J R 1961 Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers (Washington: AMES Research Center) NASA TN D-1072
[4] Rom J, Seginer 1964 AIAA J. 2 251
[5] Scherberg M G, Smith H E 1967 AIAA J. 5 51
[6] Wada I, Inoue Y 1972 J. Jpn. Soc. Aeronautical Space Sci. 20 661
[7] Gai S L, Reynolds N T, Ross C, Baird J P 1989 J. Fluid Mech. 199 541
[8] Reddeppa P, Nagashetty K, Saravanan S, Jagadeesh G, Gai S L 2011 J. Thermophysics Heat Transfer 25 321
[9] Gai S L, Hayne M J 2010 J. Thermophysics Heat Transfer 24 839
[10] East R A, Stalker R J, Baird J P 1980 J. Fluid Mech. 97 673
[11] Mallinson S G, Gai S L, Mudford N R 1997 J. Fluid Mech. 342 1
[12] Kim T H, Yoshikawa M, Obara T, Ohyagi S 2006 Shock Waves 15 1
[13] Zhu Y Z, Yi S H, Kong X P, Quan P C, Chen Z, Tian L F 2014 Acta Phys. Sin. 63 134701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰 2014 物理学报 63 134701]
[14] Fu J 2012 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [付佳 2012 硕士学位论文 (长沙: 国防科学技术大学)]
[15] Schultz D L, Jones T V 1973 Heat Transfer Measurements in Short-duration Hypersonic Facilities (London: University of Oxford) AGARD-AG-165
[16] White F M 2006 Viscous Fluid Flow (3rd Ed.) (Singapore: McGraw Hill) p30
[17] Qu Z H, Zeng M, Liu W, Liu J 1999 Hypersonic Gas Dynamics (Changsha: Press of NUDT) p111 (in Chinese) [瞿章华, 曾明, 刘伟, 柳军 1999 高超声速空气动力学(长沙: 国防科技大学出版社) 第111页]
Catalog
Metrics
- Abstract views: 6783
- PDF Downloads: 454
- Cited By: 0