Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model

Ma Ping Han Yi-Ping Zhang Ning Tian De-Yang Shi An-Hua Song Qiang

Citation:

Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model

Ma Ping, Han Yi-Ping, Zhang Ning, Tian De-Yang, Shi An-Hua, Song Qiang
PDF
HTML
Get Citation
  • According to the requirements for target detection and recognition of hypervelocity vehicles in near space, the simulation and measurement of corresponding electromagnetic scattering characteristics of non-uniform plasma generated by hypervelocity targets are conducted. A numerical calculation method with dynamic plasma parameters is developed and hypervelocity HTV2-like models launched by the ballistic ranges are used to simulate complex shape target flying at a hypervelocity velocity. The high-precision shadow imaging systems and radar measurement systems of the ballistic range are used to measure the model postures, the electromagnetic scattering characteristics of the whole targets and their flow fields in both C band and X band. The experimental measurement results of the radar cross section (RCS) of the models and their flow fields under different experimental conditions are obtained. The results show that the numerical simulation methods of unsteady high-temperature ionized air flow can be used to simulate the unsteady thermal chemical flow fields around the head and body of the simplified hypervelocity HTV2-like flight models. The electromagnetic scattering characteristics of the models and their plasma sheath differ by more than one order of magnitude under different experimental conditions. The total RCS of the model’s wake in the C band is much smaller than that of the model, and the total RCS of the model’s wake in the X band is significantly enhanced. The attitude angles of the models have great influence on their electromagnetic scattering characteristics and their RCSs with different attitude angles can differ by one order of magnitude. The electromagnetic scattering energy of the model in the C band is distributed mainly around the targets and their flow fields surrounding them. The X band electromagnetic scattering energy of the model is distributed mainly in the regions around the targets, surrounding flow fields and the wake flow fields. According to the experimental conditions of the ballistic range, the numerical simulation analyses of the electromagnetic scattering characteristics of the models and flow fields around them are carried out, and the maximum error between simulation and experimental results is less than 4 dB, verifying the effectiveness of the modeling methods of simulating electromagnetic scattering characteristics of non-uniform plasma coated targets.
      Corresponding author: Ma Ping, hbmaping@263.net
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0405200) and the National Defense Pre-Research Foundation of China (Grant No. 6140416010102)
    [1]

    Akey N D, Cross A E 1970 NASA-TN-D-5615 [1970-02-01]

    [2]

    Dirsa E F 1960 Pro. IRE 48 703Google Scholar

    [3]

    Golden K E, Pridmore D C, Stewart G E 1970 NASA 19710011626 (Washington: NASA LANGLEY Research Center)

    [4]

    Wood G E, Asmar S W, Rebold T A 1997 TDA Progress Report 42 131

    [5]

    Bachynski M P, Gibbs B W 1970 NASA 19710011649 (Washington: NASA LANGLEY Research Center)

    [6]

    Sotnikov V L, Leboeuf J N, Mudaliar S 2010 IEEE Trans. Plasma Sci. 38 2208Google Scholar

    [7]

    Usui H, Yamashita F, Matsumoto H 1999 Adv. Space Res. 24 1069Google Scholar

    [8]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technology Capua, Italy, May 16–20, 2005 p3443

    [9]

    周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern Radar 36 83Google Scholar

    [10]

    吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610

    Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio. Sci. 34 610

    [11]

    金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar

    [12]

    马平, 石安华, 杨益兼, 于哲峰, 黄洁 2015 强激光与粒子束 27 073201Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Huang J 2015 High Power Laser Part. Beams 27 073201Google Scholar

    [13]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [14]

    邾继贵, 于之靖 2012 视觉测量原理与方法 (北京: 机械工业出版社) 第4678页

    Zhu J G, Yu Z J 2012 Principles and Methods of Visual Measurements (Beijing: China Machine Press) pp46–78 (in Chinese)

    [15]

    Sun H Y, Cui Z W, Wang J J, Han Y P, Shi P 2018 Phys. Plasmas 25 063514Google Scholar

    [16]

    Sun H Y, Wang J J, Han Y P, Cui Z W, Sun P, Shi X W, Zhao W J 2018 Int. J. Antennas Propag. 1 14

    [17]

    孙浩宇 2018 博士学位论文 (西安: 西安电子科技大学)

    Sun H Y 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    艾夏 2013 博士学位论文 (西安: 西安电子科技大学)

    Ai X 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [19]

    陈安涛 2019 博士学位论文 (西安: 西安电子科技大学)

    Chen A T 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第88—89页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi’an: Xidian University Press) pp88–89 (in Chinese)

    [21]

    Ai X, Han Y, Li C Y, Shi X W 2011 Prog. Electromagn. Res. Lett. 22 83Google Scholar

    [22]

    Ai X, Han Y, Chen Z, Shi X W 2011 Prog. Electromagn. Res. M. 18 143Google Scholar

    [23]

    Ai X, Tian Y, Han Y P, Shi X W, Li W T 2013 J. Quant. Spectrosc. Radiat Transfer 124 28Google Scholar

    [24]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

  • 图 1  弹道靶高超声速类HTV2模型RCS测量实验方案

    Figure 1.  Experiment setup of electromagnetic scattering characteristics measurement for the simplified hypervelocity HTV2 flight model in the ballistic range.

    图 2  弹道靶高超声速类HTV2模型及弹托

    Figure 2.  Simplified model of the hypervelocity HTV2 and its bracket in the ballistic range.

    图 3  模型与基准线相对位置关系

    Figure 3.  Position of the model relative to the base line.

    图 4  雷达测量系统在弹道靶微波暗室中的布置示意图

    Figure 4.  Layout of the radar system in microwave anechoic chamber of the ballistic range.

    图 5  图像坐标系

    Figure 5.  Image of coordinate system.

    图 6  数字相机坐标系

    Figure 6.  Coordinate system of digital camera.

    图 7  高超声速类HTV2模型高精度阴影照片(11.2 kPa, 5.0 km/s) (a) 水平; (b) 垂直

    Figure 7.  High precision shadow photos of the simplified hypervelocity HTV2 models (11.2 kPa, 5.0 km/s): (a) Horizontal photograph; (b) vertical photograph.

    图 8  高超声速类HTV2模型C波段全目标RCS分布测量结果

    Figure 8.  Distributive measurement results of the C band full target RCS of the simplified HTV2 models flying at hypervelocity.

    图 9  高超声速类HTV2模型X波段全目标RCS分布测量结果

    Figure 9.  Distributive measurement results of the X band full target RCS of the simplified HTV2 models flying at hypervelocity.

    图 10  FDTD计算中的角度定义

    Figure 10.  Image of angle definition in FDTD calculation.

    图 11  高超声速类HTV2弹道靶模型及其等离子体鞘套X波段的RCS数值计算结果, 虚线为类HTV2本体RCS

    Figure 11.  Comparisons between numerical simulations and experiment results of the X band RCS of the simplified HTV2 models flying at hypervelocity and its plasma sheaths. The dashed line is the RCS of the simplified HTV2 models.

    图 12  高超声速类HTV2弹道靶模型及其等离子体鞘套C波段的RCS数值计算结果

    Figure 12.  Comparisons between numerical simulations and experiment results of the C band RCS of the simplified HTV2 models flying at hypervelocity and its plasma sheaths. The dashed line is the RCS of the simplified HTV2 models.

    表 1  弹道靶高超声速球模型全目标RCS实验测量结果与数值计算结果对比

    Table 1.  Comparison between measurement and numerical results of the RCS of the ball models flying at hypervelocity.

    实验状态 球模型及其等离子体鞘套套RCS/dBsm 尾迹RCS/dBsm
    压力/kPa速度/(km·s–1)测量实验值计算结果实验测量值计算结果
    4.25.0 –31.40–31.31 –52.10–50.63
    DownLoad: CSV

    表 2  高超声速类HTV2模型C波段全目标RCS实验测量结果

    Table 2.  Measurement results of the C band full target RCS of the simplified HTV2 models flying at hypervelocity.

    实验状态模型姿态高超声速类HTV2模型全目标RCS实测结果/dBsm
    速度/(km·s–1)压力/kPa俯仰角
    /(°)
    偏航角
    /(°)
    滚转角
    /(°)
    模型全目标
    总RCS
    本体及绕流场RCS尾迹RCS
    5.07.622.435.18103.655.915.90–18.83
    5.08.8–1.8514.79–107.27–4.19–4.27–21.57
    5.010.4–7.15–2.1069.40–2.61–2.72–18.75
    5.015.36.02–10.1–109.071.901.87–19.79
    DownLoad: CSV

    表 3  高超声速类HTV2模型X波段全目标RCS实验测量结果

    Table 3.  Measurement results of the X band full target RCS of the simplified HTV2 models flying at hypervelocity.

    实验状态模型姿态高超声速类HTV2模型全目标RCS
    实测结果/dBsm
    速度
    /(km·s–1)
    压力
    /kPa
    俯仰角/(°)偏航角
    /(°)
    滚转角
    /(°)
    模型全目标
    总RCS
    本体及绕流场RCS尾迹RCS
    4.08.5–17.0023.006.80–8.75–8.76–35.56
    5.06.67.50–11.00108.281.051.05–30.70
    5.08.218.9317.11109.95–2.92–3.44–12.43
    5.011.64.03–3.25107.73–3.63–3.94–15.23
    5.014.8–7.009.1070.93–5.99–9.36–8.68
    DownLoad: CSV

    表 4  高超声速类HTV2模型不同波段RCS的FDTD方法数值模拟结果与弹道靶实验测量结果的对比

    Table 4.  Various bands RCS comparisons between FDTD simulations and experiment results of the simplified HTV2 models flying at hypervelocity.

    测量波段实验状态姿态角/(°)模型及等离子体鞘套总RCS
    压力
    /kPa
    速度/(km·s–1)俯仰角偏航角滚转角测量/dBsm计算/dBsm误差/dB
    X8.25.018.9317.11109.95–3.30–1.511.79
    C10.45.0–7.15–2.1069.40.733.142.41
    X11.65.04.03–3.25107.73–3.94–5.201.26
    X14.85.0–7.009.1070.93–9.26–6.013.35
    DownLoad: CSV
  • [1]

    Akey N D, Cross A E 1970 NASA-TN-D-5615 [1970-02-01]

    [2]

    Dirsa E F 1960 Pro. IRE 48 703Google Scholar

    [3]

    Golden K E, Pridmore D C, Stewart G E 1970 NASA 19710011626 (Washington: NASA LANGLEY Research Center)

    [4]

    Wood G E, Asmar S W, Rebold T A 1997 TDA Progress Report 42 131

    [5]

    Bachynski M P, Gibbs B W 1970 NASA 19710011649 (Washington: NASA LANGLEY Research Center)

    [6]

    Sotnikov V L, Leboeuf J N, Mudaliar S 2010 IEEE Trans. Plasma Sci. 38 2208Google Scholar

    [7]

    Usui H, Yamashita F, Matsumoto H 1999 Adv. Space Res. 24 1069Google Scholar

    [8]

    Mather D E, Pasqual J M, Sillence J P, Lewis P 2005 AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technology Capua, Italy, May 16–20, 2005 p3443

    [9]

    周超, 张小宽, 张晨新, 吴国成 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Zhang C X, Wu G C 2014 Modern Radar 36 83Google Scholar

    [10]

    吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610

    Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio. Sci. 34 610

    [11]

    金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar

    Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar

    [12]

    马平, 石安华, 杨益兼, 于哲峰, 黄洁 2015 强激光与粒子束 27 073201Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Huang J 2015 High Power Laser Part. Beams 27 073201Google Scholar

    [13]

    马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar

    Ma P, Shi A H, Yang Y J, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar

    [14]

    邾继贵, 于之靖 2012 视觉测量原理与方法 (北京: 机械工业出版社) 第4678页

    Zhu J G, Yu Z J 2012 Principles and Methods of Visual Measurements (Beijing: China Machine Press) pp46–78 (in Chinese)

    [15]

    Sun H Y, Cui Z W, Wang J J, Han Y P, Shi P 2018 Phys. Plasmas 25 063514Google Scholar

    [16]

    Sun H Y, Wang J J, Han Y P, Cui Z W, Sun P, Shi X W, Zhao W J 2018 Int. J. Antennas Propag. 1 14

    [17]

    孙浩宇 2018 博士学位论文 (西安: 西安电子科技大学)

    Sun H Y 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [18]

    艾夏 2013 博士学位论文 (西安: 西安电子科技大学)

    Ai X 2013 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [19]

    陈安涛 2019 博士学位论文 (西安: 西安电子科技大学)

    Chen A T 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第88—89页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Xi’an: Xidian University Press) pp88–89 (in Chinese)

    [21]

    Ai X, Han Y, Li C Y, Shi X W 2011 Prog. Electromagn. Res. Lett. 22 83Google Scholar

    [22]

    Ai X, Han Y, Chen Z, Shi X W 2011 Prog. Electromagn. Res. M. 18 143Google Scholar

    [23]

    Ai X, Tian Y, Han Y P, Shi X W, Li W T 2013 J. Quant. Spectrosc. Radiat Transfer 124 28Google Scholar

    [24]

    陈伟, 郭立新, 李江挺, 淡荔 2017 物理学报 66 084102Google Scholar

    Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar

  • [1] Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen. Flow evolution of mixed layer on convex curvature wall under hypersonic conditions. Acta Physica Sinica, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] Xu Zi-Yuan, Zhou Hui, Liu Guang-Han, Gao Zhong-Liang, Ding Li, Lei Fan. Effect of three-dimensional traveling wave magnetic field on plasma sheath density. Acta Physica Sinica, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [3] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] Liu Yong, Tu Guo-Hua, Xiang Xing-Hao, Li Xiao-Hu, Guo Qi-Long, Wan Bing-Bing. Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves. Acta Physica Sinica, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [5] Liu Nai-Zhang, Yao Ruo-He, Geng Kui-Wei. Gate capacitance model of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [6] Xie Tian-Ci, Zhang Bin, He Bo, Li Hao-Peng, Qin Zhuang, Qian Jin-Qian, Shi Qie-Ming, Lewis Elfed, Sun Wei-Min. Mathematical algorithm model of absolute dose in radiotherapy. Acta Physica Sinica, 2021, 70(1): 018701. doi: 10.7498/aps.70.20200986
    [7] Zheng Wen-Peng, Yi Shi-He, Niu Hai-Bo, Huo Jun-Jie. Experimental research on crossflow instability for a hypersonic 4∶1 elliptic cone. Acta Physica Sinica, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [8] Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng. X-ray transmission characteristics and potential communication application in plasma region. Acta Physica Sinica, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [9] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [10] Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin. Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow. Acta Physica Sinica, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [11] Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin. Experimental study on flow visualization of hypersonic flat plate boundary layer. Acta Physica Sinica, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [12] Ma Ji-Gang, Ma Xiao-Hua, Zhang Hui-Long, Cao Meng-Yi, Zhang Kai, Li Wen-Wen, Guo Xing, Liao Xue-Yang, Chen Wei-Wei, Hao Yue. A semiempirical model for kink effect on the AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [13] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [14] Jiang Zhi-Hong, Wang Hui, Gao Chao. A evolving network model generated by random walk and policy attachment. Acta Physica Sinica, 2011, 60(5): 058903. doi: 10.7498/aps.60.058903
    [15] Wu Hua-Ying, Zhang He-Ming, Song Jian-Jun, Hu Hui-Yong. An model of tunneling gate current for uniaxially strained Si nMOSFET. Acta Physica Sinica, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [16] Li Qi, Zhang Bo, Li Zhao-Ji. A new analytical model of breakdown voltage for the SD LDMOS. Acta Physica Sinica, 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [17] Zhang He-Ming, Cui Xiao-Ying, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Study on threshold voltage model of strained SiGe quantum well channel SOI PMOSFET. Acta Physica Sinica, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [18] Hao Yue, Han Xin-Wei, Zhang Jin-Cheng, Zhang Jin-Feng. Current slump mechanism and its physical model of AlGaN/GaN HEMTs under DC bias. Acta Physica Sinica, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [19] Ma Zhong-Fa, Zhuang Yi-Qi, Du Lei, Bao Jun-Lin, Li Wei-Hua. A physical-based percolation model for gate oxide TDDB. Acta Physica Sinica, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [20] LIU HONG-XIA, FANG JIAN-PING, HAO YUE. EXPERIMENTAL ANALYSIS AND PHYSICAL MODEL INVESTIGATION OF TDDB OF THIN GATE OXIDE. Acta Physica Sinica, 2001, 50(6): 1172-1177. doi: 10.7498/aps.50.1172
Metrics
  • Abstract views:  5222
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2021
  • Accepted Date:  05 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 April 2022

/

返回文章
返回