Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region

Zhuang Xiao-Ru Xu Xin-Hai Yang Zhi Zhao Yan-Xing Yu Peng

Citation:

Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region

Zhuang Xiao-Ru, Xu Xin-Hai, Yang Zhi, Zhao Yan-Xing, Yu Peng
PDF
HTML
Get Citation
  • Supercritical CO2 can be used as a heat transfer fluid in a solar receiver, especially for a concentrating solar thermal power tower system. Such applications require better understanding of the heat transfer characteristics of supercritical CO2 in the solar receiver tube in a high temperature region. However, most of the existing experimental and numerical studies of the heat transfer characteristics of supercritical CO2 in tubes near the critical temperature region, and the corresponding heat transfer characteristics in the high temperature region are conducted. In this paper, a three-dimensional steady-state numerical simulation with the standard k-ε turbulent model is established by using ANSYS FLUENT for the flow and heat transfer of supercritical CO2 in a heated circular tube with an inner diameter of 6 mm and a length of 500 mm in the high temperature region. The effects of the fluid temperature (823–1023 K), the flow direction (horizontal, downward and upward), the pressure (7.5–9 MPa), the mass flux (200–500 kg·m–2·s–1) and the heat flux (100–800 kW·m–2) on the convection heat transfer coefficient and Nusselt number are discussed. The results show that the convection heat transfer coefficient increases while Nusselt number decreases nearly linearly with fluid temperature increasing. Both fluid direction and pressure have negligible effects on the convection heat transfer coefficient and Nusselt number. Moreover, the convective heat transfer coefficient and Nusselt number are enhanced greatly with the increasing of mass flux and the decreasing of heat flux, which is more obvious at a higher heat flux. The influences of buoyancy and flow acceleration on the heat transfer characteristics are also investigated. The buoyancy effect can be ignored within the present parameter range. However, the flow acceleration induced by the high heat flux significantly deteriorates the heat transfer preformation. Moreover, eight heat transfer correlations of supercritical fluid in tubes are evaluated and compared with the present numerical data. The comparison indicates that the correlations based on the thermal property modification show better performance in the heat transfer prediction in the high temperature region than those based on the dimensionless number modification. And Nusselt number predicted by the best correlation has a mean absolute relative deviation of 8.1% compared with the present numerical results, with all predicted data points located in the deviation bandwidth of ±20%. The present work can provide a theoretical guidance for the optimal design and safe operation of concentrating solar receivers where supercritical CO2 is used as a heat transfer fluid.
      Corresponding author: Yu Peng, yup6@sustech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51706048) and CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry (Grant No. CRYO202002)
    [1]

    Singh A S, Choudhary T, Sanjay S https://www.sae.org/publications/technical-papers/content/2019-01-1391/ [2020-9-20]

    [2]

    吴毅, 王佳莹, 王明坤, 戴义平 2016 西安交通大学学报 50 108Google Scholar

    Wu Y, Wang J Y, Wang M K, Dai Y P 2016 J. Xi'an Jiaotong Univ. 50 108Google Scholar

    [3]

    Turchi C S, Ma Z, Neises T W, Wagner M J 2013 J. Sol. Energy Eng. 135 041007Google Scholar

    [4]

    Neises T, Turchi C 2014 Energy Procedia 49 1187Google Scholar

    [5]

    黄凯欣, 饶政华, 廖胜明 2018 太阳能学报 39 44Google Scholar

    Huang X K, Rao Z H, Liao S M 2018 Acta Energiae Solaris Sinica 39 44Google Scholar

    [6]

    Benoit H, Spreafico L, Gauthier D, Flamant G 2016 Renew. Sust. Energ. Rev. 55 298Google Scholar

    [7]

    Mehos M, Turchi C, Vidal J, Wagner J, Ma Z, Ho C, Kolb W, Andraka C, Kruizenga A https://www.nrel.gov/docs/fy17osti/67464.pdf [2020-9-20]

    [8]

    Cabeza L F, de Gracia A, Fernández A I, Farid M M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [9]

    Xie J, Liu D, Yan H, Xie G, Boetcher S K 2020 Int. J. Heat Mass Transfer 149 119233Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Bovard S, Abdi M, Nikou M R K, Daryasafar A 2017 J. Supercrit. Fluids 119 88Google Scholar

    [12]

    Qiu Y, Li M J, He Y L, Tao W Q 2016 Appl. Therm. Eng. 115 1255Google Scholar

    [13]

    刘占斌, 何雅玲, 王坤, 马朝, 姜涛 2019 化工学报 70 3329Google Scholar

    Liu Z B, He Y L, Wang K, Ma Z, Jiang T 2019 J. Chem. Ind. Eng. (China) 70 3329Google Scholar

    [14]

    Lemmon E W, Huber M L, McLinden M O http://www.nist.gov/srd/nist23.cfm [2020-9-20]

    [15]

    Launder B E, Spalding D B 1972 Mathematical Models of Turbulence (London: Academic Press) p169

    [16]

    Kim D E, Kim M H 2011 Int. J. Heat Fluid Flow 32 176Google Scholar

    [17]

    Liu S, Huang Y, Liu G, Wang J, Leung L K 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [18]

    Hall W B, Jackson J D 1969 Mech. Eng. 91 66

    [19]

    Zhang Q, Li H, Kong X, Liu J, Lei X 2018 Int. J. Heat Mass Transfer 122 469Google Scholar

    [20]

    Lei Y, Chen Z 2018 Int. J. Refrig. 90 46Google Scholar

    [21]

    Xiang M, Guo J, Huai X, Cui X 2017 J. Supercrit. Fluids 130 389Google Scholar

    [22]

    Xu R N, Luo F, Jiang P X 2017 Int. J. Heat Mass Transfer 110 576Google Scholar

    [23]

    Bishop A A, Sandberg R O, Tong L S 1965 Report WCAP-2056 (Pittsburgh: Westinghouse Electric Corporation) p85

    [24]

    Kranoshchekov E A, Protopopov V S 1966 High Temp. 4 375

    [25]

    Jackson J D 2013 Nucl. Eng. Des. 264 24Google Scholar

    [26]

    Liao S M, Zhao T S 2002 Int. J. Heat Mass Transfer 45 5025Google Scholar

  • 图 1  CO2p = 7.5 MPa下的热物性变化 (a) T = 293—1050 K; (b) T = 293—350 K; (c) T = 800—1050 K

    Figure 1.  Properties of CO2 at p = 7.5 MPa: (a) T = 293–1050 K; (b) T = 293–350 K; (c) T = 800–1050 K.

    图 2  CO2在高温区T = 800—1050 K, p = 7.5—9 MPa下的热物性变化 (a) 密度; (b) 比热; (c) 热导率; (d) 黏度

    Figure 2.  Properties of CO2 at high temperature region of T = 800–1050 K with p = 7.5–9 MPa: (a) Density; (b) specific heat; (c) thermal conductivity; (d) viscosity.

    图 3  吸热管几何模型

    Figure 3.  Geometric model of the solar receiver tube.

    图 4  吸热管三维模型网格划分 (网格数量: 841000)

    Figure 4.  Mesh generation of the three-dimensional solar receiver tube (grid quantity: 841000).

    图 5  模型计算结果与文献[16]实验数据的对比 (a) 壁面温度; (b) 对流传热系数; 其中, 工况1, G = 868 kg·m–2·s–1, q = 231.0 kW·m–2, p = 9.22 MPa; 工况2, G = 873 kg·m–2·s–1, q = 216.2 kW·m–2, p = 9.09 MPa; 工况3, G = 874 kg·m–2·s–1, q = 191.8 kW·m–2, p = 8.71 MPa

    Figure 5.  Comparisons between numerical results and experimental data of Ref. [16]: (a) Wall temperature; (b) convective heat transfer coefficient. Case 1: G = 868 kg·m–2·s–1, q = 231.0 kW·m–2, p = 9.22 MPa. Case 2: G = 873 kg·m–2·s–1, q = 216.2 kW·m–2, p = 9.09 MPa. Case 3: G = 874 kg·m–2·s–1, q = 191.8 kW·m–2, p = 8.71 MPa.

    图 6  管内流体温度和流动方向在高温区对超临界CO2传热特性的影响

    Figure 6.  Effects of fluid temperature and flow direction on heat transfer of supercritical CO2 at high temperature region.

    图 7  z = 250 mm管截面平面上三种流动方向的流体 (a) 温度云图; (b) 径向速度矢量图; (c) 湍动能云图

    Figure 7.  (a) Temperature contours, (b) radial velocity fields, (c) turbulence kinetic energy contours on the plane of z = 250 mm for three flow directions.

    图 8  系统压力在高温区对超临界CO2传热特性的影响

    Figure 8.  Effect of pressure on heat transfer of supercritical CO2 at high temperature region.

    图 9  质量流率在高温区对超临界CO2传热特性的影响

    Figure 9.  Effects of mass flux on heat transfer of supercritical CO2 at high temperature region.

    图 10  热流密度在高温区对超临界CO2传热特性的影响

    Figure 10.  Effect of heat flux on heat transfer of supercritical CO2 at high temperature region.

    图 11  (a) 流动方向、(b) 系统压力、(c) 质量流率、(d) 热流密度在高温区对 (I) Bu和 (II) Ac的影响

    Figure 11.  Effects of (a) flow direction, (b) pressure, (c) mass flux, (d) heat flux on (I) Bu and (II) Ac at high temperature region.

    图 12  BuAc的分布图

    Figure 12.  Distributions of Bu and Ac

    图 13  传热关联式计算结果与模拟数据的对比

    Figure 13.  Comparisons of the calculated heat transfer results by the correlations with the numerical results.

    表 1  网格无关性验证结果

    Table 1.  Verification for grid independence.

    算例网格数量Tw,o/KTw,o的相对偏差/%ho/(kW·m–2·K–1)ho的相对偏差/%
    126522501441.901236.70
    213322501442.20.021236.40.02
    38410001442.90.071235.00.14
    44622501445.10.221230.10.54
    51960001448.80.481223.31.09
    DownLoad: CSV

    表 2  传热关联式计算结果与模拟数据的对比

    Table 2.  Comparisons of the calculated heat transfer results by the correlations with the numerical results.

    作者关联式和工况条件MARD/%η/%
    基于热物性修正
    Bishop 等[23]$Nu = 0.0069Re_{\rm{b} }^{0.9}\overline {Pr} _{\rm{b} }^{0.66}{\left( { { { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{0.43} }\left[ {1 + 2.4({D}/{L}) } \right]$22.222.3
    工质: 水
    p = 22.6—27.5 MPa, G = 680—3600 kg·m–2·s–1, q = 310—3500 kW·m–2
    Krasnoshchekov和
    Protopopov[24]
    $Nu = 0.023Re_{\rm{b} }^{0.8}Pr_{\rm{b} }^{0.5}{\left( {{ { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{0.3} }{\left( {{ {\overline { {c_{\rm{p} } } } } }/{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.4} }$8.1100
    工质: CO2
    p = 8—12 MPa, G = 2971 kg·m–2·s–1, q = 235—500 kW·m–2, Tin = 301.7—472 K
    流动方向: 水平
    Jackson[25]$Nu = 0.023Re_{\rm{b} }^{0.8}\overline {Pr} _{\rm{b} }^{0.5}{\left( { { { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{0.3} }$9.0100
    工质: CO2
    p = 7.8—9.8 MPa, Reb = 8×104—5×105, q ≤ 2600 kW·m–2
    基于无量纲数修正
    Liao和Zhao[26]垂直向上:18.160.7
    $Nu = 0.354Re_{\rm{b} }^{0.8}Pr_{\rm{b} }^{0.4}{\left( {{ { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{1.297} }{\left( {{ {\overline { {c_{\rm{p} } } } } }/{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.296} }Bo_{\rm{m} }^{ {\rm{0} }{\rm{.157} } }$
    垂直向下:
    $Nu = 0.643Re_{\rm{b} }^{0.8}Pr_{\rm{b} }^{0.4}{\left( { { { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{2.154} }{\left( { { {\overline { {c_{\rm{p} } } } } }/{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.751} }Bo_{\rm{m} }^{ {\rm{0} }{\rm{.186} } }$
    水平:
    $Nu = 0.124Re_{\rm{b} }^{0.8}Pr_{\rm{b} }^{0.4}{\left( {{ { {\rho _{\rm{w} } } } }/{ { {\rho _{\rm{b} } } } } } \right)^{0.842} }{\left( {{ {\overline { {c_{\rm{p} } } } } }/{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.384} }Bo_{\rm{b} }^{ {\rm{0} }{\rm{.203} } },~ Bo = { {Gr} }/{ {Re_{\rm{b} }^{2.7} } }$
    工质: CO2
    p = 7.4—12 MPa, G = 236—1179 kg·m–2·s–1, q = 10—200 kW·m–2, Tin = 295—385 K
    Kim 等[10]$Nu = 0.226Re_{\rm{b}}^{1.174}Pr_{\rm{b}}^{1.057}{\left( {{{{\rho _{\rm{w}}}}}/{{{\rho _{\rm{b}}}}}} \right)^{0.571}}{\left( {{{\overline {{c_{\rm{p}}}} }}/{{{c_{{\rm{p,b}}}}}}} \right)^{1.032}}A{c^{0.489}}B{u^{0.0021}}$42.311.0
    $Ac = \dfrac{ { {q^ + } } }{ {Re_{\rm b}^{0.625} } }{\left( {\dfrac{ { {\rho _{\rm{b} } } }}{ { {\rho _{\rm{w} } } } } } \right)^{0.5} }\left( {\dfrac{ { {\mu _{\rm{w} } } }}{ { {\mu _{\rm{b} } } } } } \right), ~Bu = \dfrac{ {G{r_{\rm{q} } } }}{ {Re_{\rm{b} }^{3.425}Pr_{}^{0.8} } }{\left( {\dfrac{ { {\rho _{\rm{b} } } }}{ { {\rho _{\rm{w} } } } } } \right)^{0.5} }\left( {\dfrac{ { {\mu _{\rm{w} } } }}{ { {\mu _{\rm{b} } } } } } \right)$
    工质: CO2
    p = 7.46—10.29 MPa, G = 208—874 kg·m–2·s–1, q = 38—234 kW·m–2, Tin = 302—388 K
    流动方向: 垂直向上
    Bovard 等[11]$Nu = 0.040063Re_{\rm{b}}^{1.40418}Pr_{\rm{b}}^{0.97767359}{\left( {\dfrac{{{\rho _{\rm{w}}}}}{{{\rho _{\rm{b}}}}}} \right)^{0.573108}}{\left( {\dfrac{{\overline {{c_{\rm{p}}}} }}{{{c_{{\rm{p,b}}}}}}} \right)^{0.11577}}A{c^{0.396203}}B{u^{0.13746}}$82.80
    $Ac = \dfrac{{{q^ + }}}{{Re_b^{0.625}}}{\left( {\dfrac{{{\rho _{\rm{b}}}}}{{{\rho _{\rm{w}}}}}} \right)^{0.5}}\left( {\dfrac{{{\mu _{\rm{w}}}}}{{{\mu _{\rm{b}}}}}} \right),~ Bu = \dfrac{{G{r_{\rm{m}}}}}{{Re_{\rm{b}}^{3.425}Pr_{}^{0.8}}}{\left( {\dfrac{{{\rho _{\rm{b}}}}}{{{\rho _{\rm{w}}}}}} \right)^{0.5}}\left( {\dfrac{{{\mu _{\rm{w}}}}}{{{\mu _{\rm{b}}}}}} \right)$
    工质: CO2
    p = 6.5—8.335 MPa, G = 51—236 kg·m–2·s–1, q = 52—85 kW·m–2, Tin = 302 K
    流动方向: 垂直向上
    Liu 等[17]$Nu = 0.00075Re_{\rm{b}}^{0.93}\overline {Pr} _{\rm{b}}^{0.68}{\left( {\dfrac{{{\rho _{\rm{w}}}}}{{{\rho _{\rm{b}}}}}} \right)^{0.42}}\exp \left( {B{u^{ - 0.023}}} \right)\exp \left( {A{c^{0.079}}} \right)\left[ {1 + 2.63/\left( {L/D} \right)} \right]$28.73.5
    $Bu = \dfrac{{G{r_{\rm{m}}}}}{{Re_{\rm{b}}^{2.625}Pr_{\rm{w}}^{0.4}}}{\left( {\dfrac{{{\rho _{\rm{b}}}}}{{{\rho _{\rm{w}}}}}} \right)^{0.5}}\left( {\dfrac{{{\mu _{\rm{w}}}}}{{{\mu _{\rm{b}}}}}} \right),~ Ac = \dfrac{{4{q^ + }}}{{Re_b^{0.625}}}{\left( {\dfrac{{{\rho _{\rm{b}}}}}{{{\rho _{\rm{w}}}}}} \right)^{0.5}}\left( {\dfrac{{{\mu _{\rm{w}}}}}{{{\mu _{\rm{b}}}}}} \right)$
    工质: CO2
    p = 7.4—10.6 MPa, G = 298.8—1506.5 kg·m–2·s–1, q = 4.7—296 kW·m–2, Tin = 257—322 K
    流动方向: 垂直向上
    Zhang等[19]$Nu = \left\{ \begin{gathered} 0.00672Re_{\rm{b} }^{1.414}\overline {Pr} _{\rm{b} }^{ - 0.005}{\left( {\dfrac{ { {\rho _{\rm{w} } } } }{ { {\rho _{\rm{b} } } } } } \right)^{0.448} }{\left( {\dfrac{ {\overline { {c_{\rm{p} } } } } }{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.218} }Bo_{\rm{m} }^{ {\rm{0} }{\rm{.586} } },\quad {H_{\rm{b} } } < 0.9{H_{ {\rm{pc} } } } \\ 0.056Re_{\rm{b} }^{0.829}\overline {Pr} _{\rm{b} }^{0.35}{\left( {\dfrac{ { {\rho _{\rm{w} } } } }{ { {\rho _{\rm{b} } } } } } \right)^{ - 0.095} }{\left( {\dfrac{ {\overline { {c_{\rm{p} } } } } }{ { {c_{ {\rm{p,b} } } } } } } \right)^{0.214} }Bo_{\rm{m} }^{ {\rm{0} }{\rm{.142} } }, \quad {H_{\rm{b} } } \geqslant 0.9{H_{ {\rm{pc} } } } \\\end{gathered} \right.$64.90
    工质: CO2
    p = 7.5—10.5 MPa, G = 50—500 kg·m–2·s–1, q = 5—100 kW·m–2, Tin = 266—313 K
    流动方向: 垂直向上
    DownLoad: CSV
  • [1]

    Singh A S, Choudhary T, Sanjay S https://www.sae.org/publications/technical-papers/content/2019-01-1391/ [2020-9-20]

    [2]

    吴毅, 王佳莹, 王明坤, 戴义平 2016 西安交通大学学报 50 108Google Scholar

    Wu Y, Wang J Y, Wang M K, Dai Y P 2016 J. Xi'an Jiaotong Univ. 50 108Google Scholar

    [3]

    Turchi C S, Ma Z, Neises T W, Wagner M J 2013 J. Sol. Energy Eng. 135 041007Google Scholar

    [4]

    Neises T, Turchi C 2014 Energy Procedia 49 1187Google Scholar

    [5]

    黄凯欣, 饶政华, 廖胜明 2018 太阳能学报 39 44Google Scholar

    Huang X K, Rao Z H, Liao S M 2018 Acta Energiae Solaris Sinica 39 44Google Scholar

    [6]

    Benoit H, Spreafico L, Gauthier D, Flamant G 2016 Renew. Sust. Energ. Rev. 55 298Google Scholar

    [7]

    Mehos M, Turchi C, Vidal J, Wagner J, Ma Z, Ho C, Kolb W, Andraka C, Kruizenga A https://www.nrel.gov/docs/fy17osti/67464.pdf [2020-9-20]

    [8]

    Cabeza L F, de Gracia A, Fernández A I, Farid M M 2017 Appl. Therm. Eng. 125 799Google Scholar

    [9]

    Xie J, Liu D, Yan H, Xie G, Boetcher S K 2020 Int. J. Heat Mass Transfer 149 119233Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Bovard S, Abdi M, Nikou M R K, Daryasafar A 2017 J. Supercrit. Fluids 119 88Google Scholar

    [12]

    Qiu Y, Li M J, He Y L, Tao W Q 2016 Appl. Therm. Eng. 115 1255Google Scholar

    [13]

    刘占斌, 何雅玲, 王坤, 马朝, 姜涛 2019 化工学报 70 3329Google Scholar

    Liu Z B, He Y L, Wang K, Ma Z, Jiang T 2019 J. Chem. Ind. Eng. (China) 70 3329Google Scholar

    [14]

    Lemmon E W, Huber M L, McLinden M O http://www.nist.gov/srd/nist23.cfm [2020-9-20]

    [15]

    Launder B E, Spalding D B 1972 Mathematical Models of Turbulence (London: Academic Press) p169

    [16]

    Kim D E, Kim M H 2011 Int. J. Heat Fluid Flow 32 176Google Scholar

    [17]

    Liu S, Huang Y, Liu G, Wang J, Leung L K 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [18]

    Hall W B, Jackson J D 1969 Mech. Eng. 91 66

    [19]

    Zhang Q, Li H, Kong X, Liu J, Lei X 2018 Int. J. Heat Mass Transfer 122 469Google Scholar

    [20]

    Lei Y, Chen Z 2018 Int. J. Refrig. 90 46Google Scholar

    [21]

    Xiang M, Guo J, Huai X, Cui X 2017 J. Supercrit. Fluids 130 389Google Scholar

    [22]

    Xu R N, Luo F, Jiang P X 2017 Int. J. Heat Mass Transfer 110 576Google Scholar

    [23]

    Bishop A A, Sandberg R O, Tong L S 1965 Report WCAP-2056 (Pittsburgh: Westinghouse Electric Corporation) p85

    [24]

    Kranoshchekov E A, Protopopov V S 1966 High Temp. 4 375

    [25]

    Jackson J D 2013 Nucl. Eng. Des. 264 24Google Scholar

    [26]

    Liao S M, Zhao T S 2002 Int. J. Heat Mass Transfer 45 5025Google Scholar

  • [1] Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] Yu Bo-Wen, He Xiao-Tian, Xu Jin-Liang. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer. Acta Physica Sinica, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [4] Zhang Hai-Song, Xu Jin-Liang, Zhu Xin-Jie. Dimensional analysis of flow and heat transfer of supercritical CO2 based on pseudo-boiling theory. Acta Physica Sinica, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [5] Wang Cun-Hai, Zheng Shu, Zhang Xin-Xin. Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media. Acta Physica Sinica, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [6] Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao. Theoretical study of photovoltaic performance for inverted halide perovskite solar cells. Acta Physica Sinica, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [7] Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [8] Yan Chen-Shuai, Xu Jin-Liang. Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube. Acta Physica Sinica, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [9] Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding. Numerical simulation of mixture gas arc of Ar-O2. Acta Physica Sinica, 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [10] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [11] Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin. Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow. Acta Physica Sinica, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [12] Li Da-Shu, Qiu Xing-Qi, Zheng Zhi-Wei. Numerical analysis on air entrapment during droplet impacting on a wetted surface. Acta Physica Sinica, 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [13] Xu Xiao-Xiao, Wu Yang-Yang, Liu Chao, Wang Kai-Zheng, Ye Jian. Numerical study of cooling heat transfer of supercritical carbon dioxide in a horizontal helically coiled tube. Acta Physica Sinica, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [14] Guo Ya-Li, Wei Lan, Shen Sheng-Qiang, Chen Gui-Ying. The flow and heat transfer characteristics of double droplets impacting on flat liquid film. Acta Physica Sinica, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [15] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [16] Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot. Acta Physica Sinica, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [17] Li Zhe, Jiang Hai-He, Wang Li, Yang Jing-Wei, Wu Xian-You. Numerical simulation and experimental study of thermal-induced-depolarization in 2 m Cr,Tm,Ho:YAG laser. Acta Physica Sinica, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [18] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [19] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] Wang Ke-Sheng, Liu Quan-Kun, Zhang De-Yuan. Numerical simulation of the tribological behaviour of the serial coatings of D2 steel. Acta Physica Sinica, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
Metrics
  • Abstract views:  7949
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2020
  • Accepted Date:  09 September 2020
  • Available Online:  20 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回