-
The rough sea bottom has a large effect on underwater acoustic propagation and underwater acoustic detection applications. By using the typical shallow water environment from the Yellow Sea, the acoustic propagation characteristics under the condition of both periodic rough sea bottom and strong negative thermocline layer are systematically analyzed by using the parabolic equation model RAM (where RAM stands for range-dependent acoustic model) and ray theory. For a low-frequency and short-range acoustic source, the transmission loss (TL) increases up to about 5–30 dB due to the existence of the periodic rough bottom. Abnormal TLs and pulse arrival structures with different source depths, different periods and heights of the rough bottom are analyzed and summarized. Specifically, when the period of the rough bottom is constant, TL increases with the height of the rough bottom increasing. When the height of the rough bottom is constant, the effect of the rough bottom on the sound propagation becomes smaller with the increase of the period. The mechanism of the TL difference caused by rough bottom is explained by using the ray theory. The incidence and reflection angle of the sound ray on the sea bottom are changed due to the periodic rough bottom, which makes small grazing angles of some of the rays incident at sea bottom become large grazing angles, and the bottom loss increases. On the other hand, the change of the reflection angle increases the number of ray interaction with the sea bottom, causing the reversion propagation. Therefore, the energy of the sound field will attenuate with range increasing. The influence of the periodic rough bottom on the sound pulse propagation is mainly reflected in the energy conversion between sound rays (or normal modes) with different angles, the increasing of energy attenuation of some sound rays with large angles, and the decreasing of multipath structure. The change of the arrival time and relative amplitude of the multipath structure affect the frequency spectrum of the sound field, which will affect the performance of the method based on matching field localization. Most of existing studies focus on the influence of the change in large scale sea bottom topography on the sound field, but there are few studies on small scale periodic sea bottom fluctuations, and the relevant summary of the law of sound propagation is lacking. When sonar is used in the actual shallow water environment, more attention should be paid to the influence of the periodic rough bottom. In addition, the present research results also have important reference significance for the spatial accuracy of surveying and mapping of sea bottom topography.
-
Keywords:
- negative thermocline environment /
- periodic rough sea bottom /
- abnormal sound propagation /
- characteristics of sound pulse propagation
[1] 鲍里斯·卡茨内尔松, 瓦莱里·佩提尼科夫, 詹姆斯·林奇 著 (程广利, 张亚蕾 译) 2012 浅海声学原理 (北京: 电子工业出版社)第7页
Katsnelson B, Petnikov V, Lynch J (translated by Cheng G L, Zhang Y L) 2012 Fundamentals of Shallow Water Acoustics (Beijing: Electronic Industry Press) p7 (in Chinese)
[2] 艾特P C 著 (蔡志明 译) 2005 水声建模与仿真 (北京: 电子工业出版社) 第44页
Etter P C (translated by Cai Z M) 2005 Underwater Acoustic Modeling and Simulation (Beijing: Electronic Industry Press) p44 (in Chinese)
[3] Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar
[4] McKinney C M, Anderson C 1964 J. Acoust. Soc. Am. 36 158Google Scholar
[5] Jackson D R, Baird A M, Crisp J J, Thomson P A G 1986 J. Acoust. Soc. Am. 80 1188Google Scholar
[6] Lyons A P, Anderson A L, Dwan F S 1995 J. Acoust. Soc. Am. 95 2441Google Scholar
[7] 李整林 2002 博士学位论文 (北京: 中国科学院声学研究所)
Li Z L 2002 Ph. D. Dissertation (Beijing: The institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)
[8] Chiu L Y, Chang A Y 2014 J. Acoust. Soc. Am. 136 EL376Google Scholar
[9] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302Google Scholar
[10] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar
Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta. Phys. Sin. 65 014303Google Scholar
[11] 梁民帅, 郁高坤, 彭临慧 2019 全国声学大会 中国深圳 9月20—23日, 1999 p123
Liang M S, Yu G K, Peng L H 2019 Acoustical Society of China Shenzhen, China, September 20-23, 2019 p123 (in Chinese)
[12] 董阳, 朴胜春, 龚李佳 2020 哈尔滨工程大学学报 10 1Google Scholar
Dong Y, Piao S C, Gong L J 2020 J. Harbin Eng. Univ. 10 1Google Scholar
[13] Dacol D K 1990 J. Acoust. Soc. Am. 88 978Google Scholar
[14] Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar
[15] Jackson D 2013 J. Acoust. Soc. Am. 133 3251Google Scholar
[16] 彭朝晖, 周纪浔, 张仁和 2004 中国科学: 物理学 力学 天文学 34 304Google Scholar
Peng Z H, Zhou J X, Zhang R H 2004 Sci. Sin.: Phys. Mech. Astron. 34 304Google Scholar
[17] Ivakin A N, Lysanov Y P 1981 Sov Phys Acoust 27 212
[18] Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar
[19] Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar
[20] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp463, 458
[21] Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar
[22] Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar
[23] Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar
[24] 李整林, 张仁和, Mohsen Badiey, Luo Jing 2011 声学学报 36 559Google Scholar
Li Z L, Zhang R H, Mohsen Badiey, Luo J 2011 Acta. Acust. 36 559Google Scholar
-
图 5 声源深度7 m时声线图 (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 5. Rays for source above the thermocline (7 m) with different periodic rough bottom: (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
图 6 声源深度40 m时声线图 (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 6. Rays for source below the thermocline (40 m) with different periodic rough bottom: (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
图 8 声源位于跃层上(7 m)时脉冲到达结构随深度变化(收发距离为10 km) (a)平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 8. Arrival pulses at different receiver depths for the source above the thermocline (7 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
图 9 声源位于跃层下(40 m)时脉冲到达结构随深度变化(收发距离为10 km) (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 9. Arrival pulses at different receiver depths for the source below the thermocline (40 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
图 10 声源位于跃层上(7 m)时各接收深度频谱图(收发距离为10 km) (a) 平坦海底; (b)起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 10. Spectrogram at different receiver depths for the source above the thermocline (7 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
图 11 声源位于跃层下(40 m)时各接收深度频谱图(收发距离为10 km) (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m
Figure 11. Spectrogram at different receiver depths for the source below the thermocline (40 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.
-
[1] 鲍里斯·卡茨内尔松, 瓦莱里·佩提尼科夫, 詹姆斯·林奇 著 (程广利, 张亚蕾 译) 2012 浅海声学原理 (北京: 电子工业出版社)第7页
Katsnelson B, Petnikov V, Lynch J (translated by Cheng G L, Zhang Y L) 2012 Fundamentals of Shallow Water Acoustics (Beijing: Electronic Industry Press) p7 (in Chinese)
[2] 艾特P C 著 (蔡志明 译) 2005 水声建模与仿真 (北京: 电子工业出版社) 第44页
Etter P C (translated by Cai Z M) 2005 Underwater Acoustic Modeling and Simulation (Beijing: Electronic Industry Press) p44 (in Chinese)
[3] Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar
[4] McKinney C M, Anderson C 1964 J. Acoust. Soc. Am. 36 158Google Scholar
[5] Jackson D R, Baird A M, Crisp J J, Thomson P A G 1986 J. Acoust. Soc. Am. 80 1188Google Scholar
[6] Lyons A P, Anderson A L, Dwan F S 1995 J. Acoust. Soc. Am. 95 2441Google Scholar
[7] 李整林 2002 博士学位论文 (北京: 中国科学院声学研究所)
Li Z L 2002 Ph. D. Dissertation (Beijing: The institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)
[8] Chiu L Y, Chang A Y 2014 J. Acoust. Soc. Am. 136 EL376Google Scholar
[9] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302Google Scholar
[10] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar
Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta. Phys. Sin. 65 014303Google Scholar
[11] 梁民帅, 郁高坤, 彭临慧 2019 全国声学大会 中国深圳 9月20—23日, 1999 p123
Liang M S, Yu G K, Peng L H 2019 Acoustical Society of China Shenzhen, China, September 20-23, 2019 p123 (in Chinese)
[12] 董阳, 朴胜春, 龚李佳 2020 哈尔滨工程大学学报 10 1Google Scholar
Dong Y, Piao S C, Gong L J 2020 J. Harbin Eng. Univ. 10 1Google Scholar
[13] Dacol D K 1990 J. Acoust. Soc. Am. 88 978Google Scholar
[14] Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar
[15] Jackson D 2013 J. Acoust. Soc. Am. 133 3251Google Scholar
[16] 彭朝晖, 周纪浔, 张仁和 2004 中国科学: 物理学 力学 天文学 34 304Google Scholar
Peng Z H, Zhou J X, Zhang R H 2004 Sci. Sin.: Phys. Mech. Astron. 34 304Google Scholar
[17] Ivakin A N, Lysanov Y P 1981 Sov Phys Acoust 27 212
[18] Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar
[19] Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar
[20] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp463, 458
[21] Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar
[22] Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar
[23] Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar
[24] 李整林, 张仁和, Mohsen Badiey, Luo Jing 2011 声学学报 36 559Google Scholar
Li Z L, Zhang R H, Mohsen Badiey, Luo J 2011 Acta. Acust. 36 559Google Scholar
Catalog
Metrics
- Abstract views: 8149
- PDF Downloads: 217
- Cited By: 0