Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modal intensity fluctuation during dynamic propagation of internal solitary waves in shallow water

Li Qin-Ran Sun Chao Xie Lei

Citation:

Modal intensity fluctuation during dynamic propagation of internal solitary waves in shallow water

Li Qin-Ran, Sun Chao, Xie Lei
PDF
HTML
Get Citation
  • Internal solitary wave (ISW) is a kind of nonlinear internal wave commonly observed in the shallow water, which has the characteristics of large amplitude, short period and strong current velocity. With the distribution of the temperature and the salinity in the water column perturbed by ISWs, the sound speed profile becomes range-dependent, and thus affecting the characteristics of the underwater acoustic propagation. The ISWs usually propagate at a speed of the order of 1 m/s , and moving internal waves cause the energy in each acoustic mode to fluctuate dramatically. In this paper, the modal intensity is defined as the squared modulus of the modal coefficient, and is used to measure the sound energy in each mode. Based on the coupled mode theory, the expression of the acoustic modal intensity during the propagation of internal waves is derived in this paper, and the modal intensity is taken as the linear superposition of the oscillating term and the trend term. Most of previous researches were limited to the study of the time-varying characteristics of the acoustic modal intensity during the propagation of internal waves in the time domain or frequency domain. In this paper, the mechanism of modal intensity fluctuations is studied simultaneously in the time domain and the frequency domain with the aid of the short-time Fourier transform. Both the theoretical derivation and the numerical simulation show that the internal solitary wave gives rise to the energy transfer among acoustic modes, i.e., the mode coupling. The dynamic propagation of internal waves further leads to the modal interference, which behaves as an oscillating term in the modal intensity, and causes the modal intensity to fluctuate rapidly with time. The amplitude of the trend term changes with time due to the mode stripping (the difference in attenuation coefficients between different modes), which in turn adds a time-varying offset to the oscillations induced by the modal interference. The trend of the modal intensity and the time-varying characteristics of the amplitude of each frequency component in the oscillating term are closely associated with the modal attenuation. Meanwhile, the depth-integrated intensity is chosen as the measure of the total received acoustic intensity, and the influences of modal intensity fluctuations on the acoustic energy at the receivers during the propagation of internal waves are studied. It is demonstrated that the modal intensity with high energy which oscillates most dramatically will dominate the temporal variation of the received acoustic energy.
      Corresponding author: Xie Lei, xielei2014@mail.nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904342)
    [1]

    方欣华, 杜涛 2005 海洋内波基础和中国海内波 (青岛: 中国海洋大学出版社) 第109页

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p109 (in Chinese)

    [2]

    Magalhaes J M, da Silva J C B, Buijsman M C 2020 Sci. Rep. 10 1Google Scholar

    [3]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [4]

    Duda T F, Lynch J F, Newhall A E, Wu L X, Chiu C S 2004 IEEE J. Oceanic Eng. 29 1264Google Scholar

    [5]

    Oba R, Finette S 2002 J. Acoust. Soc. Am. 111 769Google Scholar

    [6]

    Duda T F 2006 J. Acoust. Soc. Am. 119 3717Google Scholar

    [7]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, and Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 201Google Scholar

    [8]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 221Google Scholar

    [9]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [10]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16Google Scholar

    [11]

    Apel J R, Badiey M, Chiu C S, Finette S, Headrick R, Kemp J, Lynch J F, Newhall A, Orr M H, Pasewark B H, Tielbuerger D, Turgut A, von der Heydt K, Wolf S 1997 IEEE J. Oceanic Eng. 22 465Google Scholar

    [12]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [13]

    刘进忠, 王宁, 高大治 2006 声学学报 31 322Google Scholar

    Liu J Z, Wang N, Gao D Z 2006 Acta Acustia 31 322Google Scholar

    [14]

    胡涛, 王臻, 郭圣明, 马力 2020 哈尔滨工程大学学报 41 1518

    Hu T, Wang Z, Guo S M, Ma L 2020 J. Harbin Eng. Univ. 41 1518

    [15]

    Finette S, Orr M H, Turgut A, Apel J R, Badiey M, Chiu C S, Headrick R H, Kemp J N, Lynch J F, Newhall A E, von der Heydt K, Pasewark B, Wolf S N, Tielbuerger D 2000 J. Acoust. Soc. Am. 108 957Google Scholar

    [16]

    Apel J R 2003 J. Phys. Oceanogr. 33 2247Google Scholar

    [17]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [18]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [19]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Boris K, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [20]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [21]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [22]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188Google Scholar

    [23]

    Sperry B J 1999 Ph. D. Dissertation (Woods Hole: Massachussetts Institute of Technology/Woods Hole Oceanographic Institution)

    [24]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (Cambridge: Cambridge University Press) p83

    [25]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813Google Scholar

    [26]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) pp83–85

    [27]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p85, 473

    [28]

    Lee D, McDaniel S T 1988 Ocean Acoustic Propagation by Finite Difference Methods (Amsterdam: Elsevier) p386

    [29]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • 图 1  声源与接收器的布放位置及内波运动情况

    Figure 1.  Locations of the source and receivers and the details of internal wave motion.

    图 2  波导环境声速剖面 (a) 背景声速剖面; (b) 内波扰动后的声速剖面, 白色虚线标注了内波波形

    Figure 2.  Sound speed profile in the waveguide: (a) Background sound speed profile; (b) sound speed profile perturbed by internal waves, with the waveform of internal waves indicated by white dashed lines.

    图 3  模态系数耦合矩阵的模值$ |{\boldsymbol{R}}| $ (a) 无内波; (b) 有内波

    Figure 3.  Modulus of the coupling matrix $ |{\boldsymbol{R}}| $: (a) Internal waves are not present in the waveguide; (b) internal waves are present in the waveguide.

    图 4  无内波时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Figure 4.  Modal intensity variation with range when internal waves are not present in the waveguide: (a) Waveform of internal waves; (b) modal intensity variation.

    图 5  内波位于$ r_{\rm{p}} = 3\; {\rm{km}} $时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Figure 5.  Modal intensity variation with range when internal waves are at $ r_{\rm{p }}= 3\; {\rm{km}} $: (a) Waveform of internal waves; (b) modal intensity variation.

    图 6  内波位于$ r_{\rm{p}} = 2.8\; {\rm{km}} $时模态强度随距离的变化 (a) 内波波形; (b) 模态强度变化

    Figure 6.  Modal intensity variation with range when internal waves are at $ r_{\rm{p}} = 2.8\; {\rm{km}} $: (a) Waveform of internal waves; (b) modal intensity variation.

    图 7  第 1 阶接收模态强度时频分析结果 (a) 时间序列; (b) 时频图; (c) 频谱

    Figure 7.  Time-frequency analysis results of the first received mode: (a) Time series; (b) time-frequency plot; (c) frequency spectrum.

    图 8  第 3 阶接收模态强度时频分析结果 (a) 时间序列; (b) 时频图; (c) 频谱

    Figure 8.  Time-frequency analysis results of the third received mode: (a) Time series; (b) time-frequency plot; (c) frequency spectrum.

    图 9  第1阶 (蓝色曲线) 和第3阶 (红色曲线) 接收模态强度时频图中0 Hz成分随时间的变化

    Figure 9.  Variation of the 0 Hz-component in the time-frequency plane of the first (blue line) and the third (red line) modal intensity.

    图 10  各阶传播模态归一化的激励程度和衰减系数: (a) 模态激励; (b) 模态衰减

    Figure 10.  Normalized excitation and attenuation of each propagating mode: (a) Modal excitation; (b) modal attenuation.

    图 11  (a) 第$ l = 3 $阶接收模态强度中各直流分量的归一化时不变幅度$ B_{ln}|_{l = 3} $; (b) 第$ l = 3 $阶接收模态强度中归一化的直流成分

    Figure 11.  (a) Normalized time-invariant amplitude of each DC component in the third modal intensity; (b) normalized DC part in the third modal intensity.

    图 12  (a) 各阶传播模态强度随时间的变化; (b) 深度积分声强随时间的变化

    Figure 12.  (a) Temporal variations of modal intensities of propagating modes; (b) temporal variation of the depth-integrated intensity.

    表 1  深度积分声强和各阶模态强度起伏的均值和标准差

    Table 1.  Mean values and the standard deviations of the depth-integrated intensity and the modal intensities.

    声学量均值标准差
    $ \bar I(T) \times{r_{\rm{e}}} $ 0.0694 0.0116
    $|a_l(T)|^{2}_{l=1}\times{r_{\rm{e}}}$ 0.0514 0.0144
    $|a_l(T)|^{2}_{l=2}\times{r_{\rm{e}}}$ 0.0151 0.0079
    $|a_l(T)|^{2}_{l=3}\times{r_{\rm{e}}}$ 0.0024 0.0026
    $|a_l(T)|^{2}_{l=4}\times{r_{\rm{e}}}$ 3.60 × 10–4 4.45 × 10–4
    $|a_l(T)|^{2}_{l=5}\times{r_{\rm{e}}}$ 2.96 × 10–4 3.87 × 10–4
    $|a_l(T)|^{2}_{l=6}\times{r_{\rm{e}}}$ 4.43 × 10–5 8.52 × 10–5
    $ |a_l(T)|^{2}_{l=7}\times{r_{\rm{e}}} $ 4.30 × 10–6 1.22 × 10–5
    $ |a_l(T)|^{2}_{l=8}\times{r_{\rm{e}}} $ 7.34 × 10–9 3.11 × 10–8
    DownLoad: CSV
  • [1]

    方欣华, 杜涛 2005 海洋内波基础和中国海内波 (青岛: 中国海洋大学出版社) 第109页

    Fang X H, Du T 2005 Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas (Qingdao: China Ocean University Press) p109 (in Chinese)

    [2]

    Magalhaes J M, da Silva J C B, Buijsman M C 2020 Sci. Rep. 10 1Google Scholar

    [3]

    Chiu C S, Ramp S R, Miller C W, Lynch J F, Duda T F, Tang T Y 2004 IEEE J. Oceanic Eng. 29 1249Google Scholar

    [4]

    Duda T F, Lynch J F, Newhall A E, Wu L X, Chiu C S 2004 IEEE J. Oceanic Eng. 29 1264Google Scholar

    [5]

    Oba R, Finette S 2002 J. Acoust. Soc. Am. 111 769Google Scholar

    [6]

    Duda T F 2006 J. Acoust. Soc. Am. 119 3717Google Scholar

    [7]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, and Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 201Google Scholar

    [8]

    Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Apel J, Badiey M, Chiu C S, Finette S, Orr M, Pasewark B, Turgot A, Wolf S, Tielbuerger D 2000 J. Acoust. Soc. Am. 107 221Google Scholar

    [9]

    Zhou J X, Zhang X Z, Rogers P H 1991 J. Acoust. Soc. Am. 90 2042Google Scholar

    [10]

    Duda T F, Preisig J C 1999 IEEE J. Oceanic Eng. 24 16Google Scholar

    [11]

    Apel J R, Badiey M, Chiu C S, Finette S, Headrick R, Kemp J, Lynch J F, Newhall A, Orr M H, Pasewark B H, Tielbuerger D, Turgut A, von der Heydt K, Wolf S 1997 IEEE J. Oceanic Eng. 22 465Google Scholar

    [12]

    Rouseff D, Turgut A, Wolf S N, Finette S, Orr M H, Pasewark B H, Apel J R, Badiey M, Chiu C S, Headrick R H, Lynch J F, Kemp J N, Newhall A E, von der Heydt K, Tielbuerger D 2002 J. Acoust. Soc. Am. 111 1655Google Scholar

    [13]

    刘进忠, 王宁, 高大治 2006 声学学报 31 322Google Scholar

    Liu J Z, Wang N, Gao D Z 2006 Acta Acustia 31 322Google Scholar

    [14]

    胡涛, 王臻, 郭圣明, 马力 2020 哈尔滨工程大学学报 41 1518

    Hu T, Wang Z, Guo S M, Ma L 2020 J. Harbin Eng. Univ. 41 1518

    [15]

    Finette S, Orr M H, Turgut A, Apel J R, Badiey M, Chiu C S, Headrick R H, Kemp J N, Lynch J F, Newhall A E, von der Heydt K, Pasewark B, Wolf S N, Tielbuerger D 2000 J. Acoust. Soc. Am. 108 957Google Scholar

    [16]

    Apel J R 2003 J. Phys. Oceanogr. 33 2247Google Scholar

    [17]

    Yang T C 2014 J. Acoust. Soc. Am. 135 610Google Scholar

    [18]

    Dozier L B, Tappert F D 1978 J. Acoust. Soc. Am. 63 353Google Scholar

    [19]

    秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145

    Qin J X, Boris K, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustia 41 145

    [20]

    宋文华, 胡涛, 郭圣明, 马力 2014 物理学报 63 194303Google Scholar

    Song W H, Hu T, Guo S M, Ma L 2014 Acta Phys. Sin. 63 194303Google Scholar

    [21]

    Song W H, Wang N, Gao D Z, Wang H Z, Hu T, Guo S M 2017 J. Acoust. Soc. Am. 142 1848Google Scholar

    [22]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188Google Scholar

    [23]

    Sperry B J 1999 Ph. D. Dissertation (Woods Hole: Massachussetts Institute of Technology/Woods Hole Oceanographic Institution)

    [24]

    Colosi J A 2016 Sound Propagation Through the Stochastic Ocean (Cambridge: Cambridge University Press) p83

    [25]

    Buck J R, Preisig J C, Wage K E 1998 J. Acoust. Soc. Am. 103 1813Google Scholar

    [26]

    Katsnelson B, Petnikov V, Lynch J 2012 Fundamentals of Shallow Water Acoustics (Boston: Springer) pp83–85

    [27]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p85, 473

    [28]

    Lee D, McDaniel S T 1988 Ocean Acoustic Propagation by Finite Difference Methods (Amsterdam: Elsevier) p386

    [29]

    Porter M B 1992 The KRAKEN Normal Mode Program (Washington DC: Naval Research Laboratory)

  • [1] Liang Ke-Da, Liu Teng-Fei, Chang Zhe, Zhang Meng, Li Zhi-Xin, Huang Song-Song, Wang Jing. Inversion models of internal solitary wave propagation speed in ocean based on least squares method and support vector machine. Acta Physica Sinica, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] Wu Shuang-Lin, Li Zheng-Lin, Qin Ji-Xing, Wang Meng-Yuan, Dong Fan-Chen. Influence of tropical dipole in the East Indian Ocean on acoustic convergence region. Acta Physica Sinica, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] Zhi Chang-Hong, Xu Shuang-Dong, Han Pan-Pan, Chen Ke, You Yun-Xiang. Applicability of high-order unidirectional internal solitary wave theoretical model. Acta Physica Sinica, 2022, 71(17): 174701. doi: 10.7498/aps.71.20220411
    [4] Gao Fei, Xu Fang-Hua, Li Zheng-Lin, Qin Ji-Xing. Mode coupling and intensity fluctuation of sound propagation over continental slope in presence of internal waves. Acta Physica Sinica, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [5] Liu Dai, Li Zheng-Lin, Liu Ruo-Yun. Sound propagation in shallow water with periodic rough bottom. Acta Physica Sinica, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [6] Liu Juan, Li Qi. A coupledj-mode method for sound propagation in range-dependent waveguides. Acta Physica Sinica, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [7] Bi Si-Zhao, Peng Zhao-Hui. Effect of earth curvature on long range sound propagation. Acta Physica Sinica, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [8] Liu Jin, Peng Zhao-Hui, Zhang Ling-Shan, Liu Ruo-Yun, Li Zheng-Lin. Effects of swells on sound propagation in surface duct environment in shallow water. Acta Physica Sinica, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [9] Research on the modal intensity fluctuation during the dynamic propagation of internal solitary waves in the shallow water. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211132
    [10] Yao Mei-Juan, Lu Li-Cheng, Sun Bing-Wen, Guo Sheng-Ming, Ma Li. Effects of wind-generated bubbles layer on sound propagation underneath rough sea surface in shallow water. Acta Physica Sinica, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [11] Zhang Ze-Zhong, Luo Wen-Yu, Pang Zhe, Zhou Yi-Qing. Modeling of three-dimensional sound propagation through solitary internal waves. Acta Physica Sinica, 2019, 68(20): 204302. doi: 10.7498/aps.68.20190478
    [12] Qiao Hou, He Zeng, Zhang Heng-Kun, Peng Wei-Cai, Jiang Wen. Sound transmission in two-dimensional periodic poroelastic structures. Acta Physica Sinica, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [13] Fan Yu-Zhe, Chen Bao-Wei, Li Hai-Sen, Xu Chao. Linear-wave propagation in liquids containing bubbly clusters. Acta Physica Sinica, 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [14] Hu Zhi-Guo, Li Zheng-Lin, Zhang Ren-He, Ren Yun, Qin Ji-Xing, He Li. Sound propagation in deep water with a sloping bottom. Acta Physica Sinica, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] Nie Yong-Fa, Zhu Hai-Chao. Acoustic field reconstruction using source strength density acoustic radiation modes. Acta Physica Sinica, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [16] Wang Yong, Lin Shu-Yu, Zhang Xiao-Li. Propagation of nonlinear waves in the bubbly liquids. Acta Physica Sinica, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [17] Yang Chun-Mei, Luo Wen-Yu, Zhang Ren-He, Qin Ji-Xing. A coupled-mode method for sound propagation in a range-dependent penetrable waveguide. Acta Physica Sinica, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [18] Huang Wen-Hao, You Yun-Xiang, Wang Xu, Hu Tian-Qun. Wave-making experiments and theoretical models for internal solitary waves in a two-layer fluid of finite depth. Acta Physica Sinica, 2013, 62(8): 084705. doi: 10.7498/aps.62.084705
    [19] Du Hui, Wei Gang, Zhang Yuan-Ming, Xu Xiao-Hui. Experimental investigations on the propagation characteristics of internal solitary waves over a gentle slope. Acta Physica Sinica, 2013, 62(6): 064704. doi: 10.7498/aps.62.064704
    [20] TANG YING-WU. THE NORMAL-MODE SOUND FIELD IN SHALLOW WATER HAVING A POSITIVE SOUND VELOCITY GRADIENT AND A RANDOM FLUCTUATION SURFACE. Acta Physica Sinica, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
Metrics
  • Abstract views:  5088
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2021
  • Accepted Date:  28 September 2021
  • Available Online:  01 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回