-
The signal-to-noise ratio gain of the array is closely related to the spatial characteristics of the noise field. The modeling of the spatial characteristics of marine environmental noise is always a hot spot. For sonar with different functions, the working frequency band and bandwidth are usually different. Therefore, the spatial correlation coefficient of the noise field in arbitrary frequency band has important reference value for designing sonar systems. According to the process of generating the marine environmental noise field under the high frequency approximation condition, a noise field time-domain modeling method is proposed, and the integral expression of the time-domain sound pressure and particle vibration velocity of marine environmental noise in a horizontally layered medium is given. This lays the foundation for establishing a broadband model of the noise vector field. In particular, the analytical expression of the spatial correlation coefficient of the broadband white noise vector field in the vertical direction under specific condition is also given. Following the spectral structure of wind-generated noise, the spatial correlation coefficients of noise fields with different frequency bands and different spectral slopes are numerically calculated, revealing the influence of bandwidth and spectral structure on the spatial characteristics of marine environmental noise, and the principle behind the result is explained through theoretical derivation. With the increase of the array element spacing and bandwidth, the number of oscillation periods and the oscillation amplitude of the spatial correlation coefficient of each component of the noise vector field gradually decrease, which is caused by the frequency domain average of the noise field correlation coefficient. When the spectral slope is less than zero, the low-frequency noise plays a major role, causing the spatial correlation radius of the broadband noise field to be larger than that of the narrowband noise field. The result of the experiment conducted in South China Sea shows that the measured vertical spatial correlation coefficient of the sound pressure field of marine environmental noise is in good agreement with the theoretical result. The model has potential application prospects for the research of transducer array technology and the inversion of environmental parameters.
-
Keywords:
- broadband noise /
- time domain model /
- spatial correlation /
- acoustic vector field
[1] Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar
[2] Carbone N M, Deane G B, Buckingham M J 1998 J. Acoust. Soc. Am. 103 801Google Scholar
[3] Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar
[4] Harrison C H 2004 J. Acoust. Soc. Am. 115 1505Google Scholar
[5] Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar
[6] Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar
[7] Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar
[8] Harrison C H 1996 J. Acoust. Soc. Am. 99 2055Google Scholar
[9] Carey W M, Evans E B, Davis J A, Botseas G 1990 IEEE. J. Oceanic. Eng. 15 324Google Scholar
[10] Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar
[11] 蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar
Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar
[12] 蒋光禹, 孙超, 李沁然 2020 物理学报 69 144301Google Scholar
Jiang G Y, Sun C, Li Q R 2020 Acta Phys. Sin. 69 144301Google Scholar
[13] 张乾初, 郭新毅, 马力 2019 声学学报 44 189
Zhang Q C, Guo X Y, Ma L 2019 Acta Acustica 44 189
[14] 江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724
Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724
[15] 江鹏飞, 林建恒, 孙军平, 衣雪娟 2017 物理学报 66 014306Google Scholar
Jiang P F, Lin J H, Sun J P, Yi X J 2017 Acta Phys. Sin. 66 014306Google Scholar
[16] 周建波, 朴胜春, 黄益旺, 刘亚琴, 欧焱青 2017 哈尔滨工程大学学报 38 1056
Zhou J B, Piao S C, Huang Y W, Liu Y Q, Ou Y Q 2017 J. Harbin Engin. Univ. 38 1056
[17] 周建波, 朴胜春, 刘亚琴, 祝捍皓 2017 物理学报 66 014301Google Scholar
Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301Google Scholar
[18] D’Spain G L, Luby J C, Wilson G R, Gramann R A 2006 J. Acoust. Soc. Am. 120 171Google Scholar
[19] Zhou J B, Piao S C, Qu K, Iqbal K, Yang D, Zhang S Z, Zhang H G, Wang X H, Liu Y Q 2017 J. Acoust. Soc. Am. 142 EL507Google Scholar
[20] Hawkes M, Nehorai A 1998 IEEE Trans. Signal Process. 46 2291Google Scholar
[21] Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481Google Scholar
[22] Hawkes M, Nehorai A 2001 IEEE. J. Oceanic. Eng. 26 337Google Scholar
[23] 孙贵青, 杨德森, 时胜国 2009 声学学报 28 509
Sun G Q, Yang D S, Shi S G 2009 Acta Acustica 28 509
[24] 黄益旺, 杨士莪, 朴胜春 2009 哈尔滨工程大学学报 30 1209Google Scholar
Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engin. Univ. 30 1209Google Scholar
[25] Cox H, Lai H, Bell K 2009 Conference Record of the Forty-Third Asilomar Conference on Signals CA, USA, November 1–4, 2009 p459
[26] Cray B A, Nuttall A H 2001 J. Acoust. Soc. Am. 110 324Google Scholar
[27] Nichols B, Martin J, Verlinden C, Sabra K G 2019 J. Acoust. Soc. Am. 145 3567Google Scholar
[28] 鄢锦, 罗显志, 侯朝焕 2006 声学学报 31 310Google Scholar
Yan J, Luo X Z, Hou C H 2006 Acta Acustica 31 310Google Scholar
[29] 黄益旺, 杨士莪 2010 哈尔滨工程大学学报 31 137Google Scholar
Huang Y W, Yang S E 2010 J. Harbin Engin. Univ. 31 137Google Scholar
[30] 黄益旺, 李婷, 于盛齐, 张维 2010 哈尔滨工程大学学报 31 975Google Scholar
Huang Y W, Li T, Yu S Q, Zhang W 2010 J. Harbin Engin. Univ. 31 975Google Scholar
[31] Huang Y W, Ren Q Y, Li T 2012 J. Mar. Sci. Appl. 11 119Google Scholar
[32] Deal T J 2018 J. Acoust. Soc. Am. 143 605Google Scholar
[33] Buckingham M J 2012 J. Acoust. Soc. Am. 131 2643Google Scholar
[34] Barclay D R, Buckingham M J 2013 J. Acoust. Soc. Am. 133 62Google Scholar
[35] Ren C, Huang Y W 2020 J. Acoust. Soc. Am. 147 EL99Google Scholar
[36] 布列霍夫斯基 Л М (山东海洋学院海洋物理系, 中国科学院声学研究所水声研究室 译) 1983 海洋声学 (北京: 科学出版社) 第511−520页
Бреховских Л М (translated by Department of Oceanophysics Shandong College of Oceanology, Laboratory of Underwater Acoustic Institute of Acoustics Chinese Academy of Science) 1983 Fundamentals of Ocean Acoustics (Beijing: Science Press) pp511−520 (in Chinese)
[37] Thorp W H 1967 J. Acoust. Soc. Am. 42 240
[38] Zhou J X 2009 J. Acoust. Soc. Am. 125 2847Google Scholar
[39] 刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (第三版) (北京: 科学出版社) 第243页
Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (3 rd edition) (Beijing: Science Press) pp243 (in Chinese)
[40] 石学法 2012 中国近海海洋: 海洋底质 (北京: 海洋出版社) 第375−380页
Shi X F 2012 China Offshore Ocean: Seafloor Material (Beijing: China Ocean Press) pp375−380 (in Chinese)
[41] 杰克逊 D R, 理查德森 M D (刘保华, 阚光明, 李官保, 韩同城, 孟祥梅, 张德玉 译) 2014 高频海底声学 (北京: 海洋出版社) 第107−110页
Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B, Han T C, Meng X M, Zhang D Y) 2014 High-Frequency Seafloor Acoustics (Beijing: China Ocean Press) pp107−110 (in Chinese)
[42] 蒋东阁, 林建恒, 孙军平, 江鹏飞, 衣雪娟, 马力, 蒋国健 2017 中国海洋大学学报(自然科学版) 47 140
Jiang D G, Lin J H, Sun J P, Jiang P F, Yi X J, Ma L, Jiang G J 2017 Per. Ocean. Univ. China. (Nat. Sci.) 47 140 (in Chinese)
-
表 1 环境参数
Table 1. Environmental parameters.
介质 声速/(m·s–1) 密度/(g·cm–3) 衰减系数/(dB·m–1) 海水 声速剖面 1.0 6.5×10–5 海底 1700 1.8 0.25 表 2 噪声相关特性理论值与实验值的相关系数
Table 2. Correlation coefficient of theoretical and experimental correlation characteristic of noise.
带宽 窄带
噪声100 Hz 200 Hz 400 Hz 数据1 0.948 0.920 0.938 0.964 数据2 0.963 0.961 0.969 0.970 -
[1] Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar
[2] Carbone N M, Deane G B, Buckingham M J 1998 J. Acoust. Soc. Am. 103 801Google Scholar
[3] Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar
[4] Harrison C H 2004 J. Acoust. Soc. Am. 115 1505Google Scholar
[5] Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar
[6] Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar
[7] Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar
[8] Harrison C H 1996 J. Acoust. Soc. Am. 99 2055Google Scholar
[9] Carey W M, Evans E B, Davis J A, Botseas G 1990 IEEE. J. Oceanic. Eng. 15 324Google Scholar
[10] Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar
[11] 蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar
Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar
[12] 蒋光禹, 孙超, 李沁然 2020 物理学报 69 144301Google Scholar
Jiang G Y, Sun C, Li Q R 2020 Acta Phys. Sin. 69 144301Google Scholar
[13] 张乾初, 郭新毅, 马力 2019 声学学报 44 189
Zhang Q C, Guo X Y, Ma L 2019 Acta Acustica 44 189
[14] 江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724
Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724
[15] 江鹏飞, 林建恒, 孙军平, 衣雪娟 2017 物理学报 66 014306Google Scholar
Jiang P F, Lin J H, Sun J P, Yi X J 2017 Acta Phys. Sin. 66 014306Google Scholar
[16] 周建波, 朴胜春, 黄益旺, 刘亚琴, 欧焱青 2017 哈尔滨工程大学学报 38 1056
Zhou J B, Piao S C, Huang Y W, Liu Y Q, Ou Y Q 2017 J. Harbin Engin. Univ. 38 1056
[17] 周建波, 朴胜春, 刘亚琴, 祝捍皓 2017 物理学报 66 014301Google Scholar
Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301Google Scholar
[18] D’Spain G L, Luby J C, Wilson G R, Gramann R A 2006 J. Acoust. Soc. Am. 120 171Google Scholar
[19] Zhou J B, Piao S C, Qu K, Iqbal K, Yang D, Zhang S Z, Zhang H G, Wang X H, Liu Y Q 2017 J. Acoust. Soc. Am. 142 EL507Google Scholar
[20] Hawkes M, Nehorai A 1998 IEEE Trans. Signal Process. 46 2291Google Scholar
[21] Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481Google Scholar
[22] Hawkes M, Nehorai A 2001 IEEE. J. Oceanic. Eng. 26 337Google Scholar
[23] 孙贵青, 杨德森, 时胜国 2009 声学学报 28 509
Sun G Q, Yang D S, Shi S G 2009 Acta Acustica 28 509
[24] 黄益旺, 杨士莪, 朴胜春 2009 哈尔滨工程大学学报 30 1209Google Scholar
Huang Y W, Yang S E, Piao S C 2009 J. Harbin Engin. Univ. 30 1209Google Scholar
[25] Cox H, Lai H, Bell K 2009 Conference Record of the Forty-Third Asilomar Conference on Signals CA, USA, November 1–4, 2009 p459
[26] Cray B A, Nuttall A H 2001 J. Acoust. Soc. Am. 110 324Google Scholar
[27] Nichols B, Martin J, Verlinden C, Sabra K G 2019 J. Acoust. Soc. Am. 145 3567Google Scholar
[28] 鄢锦, 罗显志, 侯朝焕 2006 声学学报 31 310Google Scholar
Yan J, Luo X Z, Hou C H 2006 Acta Acustica 31 310Google Scholar
[29] 黄益旺, 杨士莪 2010 哈尔滨工程大学学报 31 137Google Scholar
Huang Y W, Yang S E 2010 J. Harbin Engin. Univ. 31 137Google Scholar
[30] 黄益旺, 李婷, 于盛齐, 张维 2010 哈尔滨工程大学学报 31 975Google Scholar
Huang Y W, Li T, Yu S Q, Zhang W 2010 J. Harbin Engin. Univ. 31 975Google Scholar
[31] Huang Y W, Ren Q Y, Li T 2012 J. Mar. Sci. Appl. 11 119Google Scholar
[32] Deal T J 2018 J. Acoust. Soc. Am. 143 605Google Scholar
[33] Buckingham M J 2012 J. Acoust. Soc. Am. 131 2643Google Scholar
[34] Barclay D R, Buckingham M J 2013 J. Acoust. Soc. Am. 133 62Google Scholar
[35] Ren C, Huang Y W 2020 J. Acoust. Soc. Am. 147 EL99Google Scholar
[36] 布列霍夫斯基 Л М (山东海洋学院海洋物理系, 中国科学院声学研究所水声研究室 译) 1983 海洋声学 (北京: 科学出版社) 第511−520页
Бреховских Л М (translated by Department of Oceanophysics Shandong College of Oceanology, Laboratory of Underwater Acoustic Institute of Acoustics Chinese Academy of Science) 1983 Fundamentals of Ocean Acoustics (Beijing: Science Press) pp511−520 (in Chinese)
[37] Thorp W H 1967 J. Acoust. Soc. Am. 42 240
[38] Zhou J X 2009 J. Acoust. Soc. Am. 125 2847Google Scholar
[39] 刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (第三版) (北京: 科学出版社) 第243页
Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (3 rd edition) (Beijing: Science Press) pp243 (in Chinese)
[40] 石学法 2012 中国近海海洋: 海洋底质 (北京: 海洋出版社) 第375−380页
Shi X F 2012 China Offshore Ocean: Seafloor Material (Beijing: China Ocean Press) pp375−380 (in Chinese)
[41] 杰克逊 D R, 理查德森 M D (刘保华, 阚光明, 李官保, 韩同城, 孟祥梅, 张德玉 译) 2014 高频海底声学 (北京: 海洋出版社) 第107−110页
Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B, Han T C, Meng X M, Zhang D Y) 2014 High-Frequency Seafloor Acoustics (Beijing: China Ocean Press) pp107−110 (in Chinese)
[42] 蒋东阁, 林建恒, 孙军平, 江鹏飞, 衣雪娟, 马力, 蒋国健 2017 中国海洋大学学报(自然科学版) 47 140
Jiang D G, Lin J H, Sun J P, Jiang P F, Yi X J, Ma L, Jiang G J 2017 Per. Ocean. Univ. China. (Nat. Sci.) 47 140 (in Chinese)
Catalog
Metrics
- Abstract views: 4784
- PDF Downloads: 116
- Cited By: 0